Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6753–6763 | Cite as

Improvement of butanol production by the development and co-culture of C. acetobutylicum TSH1 and B. cereus TSH2

  • Shuo Mi
  • Chunkai Gu
  • Pengfei Wu
  • Hongjuan Liu
  • Xiang Yan
  • Dongyue Li
  • Xiang Tang
  • Xiaorui Duan
  • Genyu WangEmail author
  • Jianan ZhangEmail author
Bioenergy and biofuels


Butanol fermentation comprises two successive and distinct stages, namely acidogenesis and solventogenesis. The current lack of clarity regarding the underlying metabolic regulation of fermentation impedes improvements in biobutanol production. Here, a proteomics study was performed in the acidogenesis phase, the lowest pH point (transition point), and the solventogenesis phase in the butanol-producing symbiotic system TSH06. Forty-two Clostridium acetobutylicum proteins demonstrated differential expression levels at different stages. The protein level of butanol dehydrogenase increased in the solventogenesis phase, which was in accordance with the trend of butanol concentration. Stress proteins were upregulated either at the transition point or in the solventogenesis phase. The cell division-related protein Maf was upregulated at the transition point. We disrupted the maf gene in C. acetobutylicum TSH1, and Bacillus cereus TSH2 was added to form a new symbiotic system. TSH06△maf produced 13.9 ± 1.0 g/L butanol, which was higher than that of TSH06 (12.3 ± 0.9 g/L). Butanol was furtherly improved in fermentation at variable temperature with neutral red addition for both TSH06 and TSH06△maf. The butanol titer of the maf deletion strain was higher than that of the wild type, although the exact mechanism remains to be determined.


Butanol Proteomics Phase transition Metabolic engineering TSH06 Symbiotic system 



The authors thank Prof. Nigel P. Minton and Dr. John T. Heap for generous gift of ClosTron system. We would like to thank Editage ( for English language editing.


This study was funded by the National Key R&D Program of China (2016YFE0131300), the National Natural Science Foundation of China (NO.21176141), the Tsinghua University Initiative Scientific Research Program (NO.2012THZ02289), and Norway Statoil Petroleum AS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

253_2018_9151_MOESM1_ESM.pdf (378 kb)
ESM 1 (PDF 377 kb)


  1. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267CrossRefPubMedGoogle Scholar
  2. Alsaker KV, Paredes C, Papoutsakis ET (2010) Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum. Biotechnol Bioeng 105:1131–1147. PubMedCrossRefGoogle Scholar
  3. Asayama M, Kobayashi Y (1993) Signal transduction and sporulation in Bacillus subtilis: autophosphorylation of Spo0A, a sporulation initiation gene product. Mol Gen Genet 238:138–144PubMedGoogle Scholar
  4. Baer SH, Blaschek HP, Smith TL (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Appl Environ Microbiol 53:2854–2861PubMedPubMedCentralGoogle Scholar
  5. Briley K Jr, Prepiak P, Dias MJ, Hahn J, Dubnau D (2011) Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis. Mol Microbiol 81:23–39CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rösch P (2010) A NusE:NusG complex links transcription and translation. Science 328:501–504CrossRefPubMedGoogle Scholar
  7. Butler YX, Abhayawardhane Y, Stewart GC (1993) Amplification of the Bacillus subtilis maf gene results in arrested septum formation. J Bacteriol 175:3139–3145CrossRefPubMedPubMedCentralGoogle Scholar
  8. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945PubMedPubMedCentralGoogle Scholar
  9. Filatova IY, Kazakov AS, Muzafarov EN, Zakharova MV (2017) Protein SgpR of Pseudomonas putida strain AK5 is a LysR-type regulator of salicylate degradation through gentisate. FEMS Microbiol Lett 364.
  10. Girbal L, Vasconcelos I, Saint-Amans S, Soucaille P (1995) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151–162CrossRefGoogle Scholar
  11. Gu C, Wang G, Mai S, Wu P, Wu J, Wang G, Liu H, Zhang J (2017) ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotechnol 101:2189–2199CrossRefPubMedGoogle Scholar
  12. Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 97:454–471CrossRefPubMedPubMedCentralGoogle Scholar
  13. Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3597CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hartmanis M, Klason T, Gatenbeck S (1984) Uptake and activation of acetate and butyrate in Clostridium acetobutylicum. Appl Microbiol Biotechnol 20:66–71CrossRefGoogle Scholar
  15. Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464CrossRefPubMedGoogle Scholar
  16. Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78(1):79–85CrossRefPubMedGoogle Scholar
  17. Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55CrossRefPubMedGoogle Scholar
  18. Hillmann F, Fischer RJ, Bahl H (2006) The rubrerythrin-like protein Hsp21 of Clostridium acetobutylicum is a general stress protein. Arch Microbiol 185:270–276CrossRefPubMedGoogle Scholar
  19. Jang YS, Lee JY, Lee J, Park JH, Im JA, Eom MH, Lee J, Lee SH, Song H, Cho JH, Seung DY, Lee SY (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio 3:e00314–e00312. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Janssen H, Döring C, Ehrenreich A, Voigt B, Hecker M, Bahl H, Fischer RJ (2010) A proteomic and transcriptional view of acidogenic and solventogenic steady-state cells of Clostridium acetobutylicum in a chemostat culture. Appl Microbiol Biotechnol 87:2209–2226CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jin J, Wu R, Zhu J, Yang S, Lei Z, Wang N, Singh VK, Zheng J, Jia Z (2015) Insights into the cellular function of YhdE, a nucleotide pyrophosphatase from Escherichia coli. PLoS One 10:e0117823. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524PubMedPubMedCentralGoogle Scholar
  23. Mai S, Wang G, Wu P, Gu C, Liu H, Zhang J, Wang G (2017) Interactions between Bacillus cereus CGMCC 1.895 and Clostridium beijerinckii NCIMB 8052 in coculture for butanol production under nonanaerobic conditions. Biotechnol Appl Biochem 64:719–726CrossRefPubMedGoogle Scholar
  24. Mao S, Luo Y, Bao G, Zhang Y, Li MY (2011) Comparative analysis on the membrane proteome of Clostridium acetobutylicum wild type strain and its butanol-tolerant mutant. Mol BioSyst 7:1660–1677CrossRefPubMedGoogle Scholar
  25. Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology (N Y) 10:190–195Google Scholar
  26. Nair RV, Green EM, Watson DE, Bennett GN, Papoutsakis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181:319–330PubMedPubMedCentralGoogle Scholar
  27. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429CrossRefPubMedGoogle Scholar
  28. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J (2015) Incubation at 25°C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 192:296–303CrossRefPubMedGoogle Scholar
  29. Riebe O, Fischer RJ, Wampler DA Jr, Kurtz DM, Bahl H (2009) Pathway for H2O2 and O2 detoxification in Clostridium acetobutylicum. Microbiology 155:16–24CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sillers R, Al-Hinai MA, Papoutsakis ET (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol Bioeng 102:38–49CrossRefPubMedGoogle Scholar
  31. Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308CrossRefPubMedGoogle Scholar
  32. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965CrossRefPubMedPubMedCentralGoogle Scholar
  33. Venkataramanan KP, Min L, Hou S, Jones SW, Ralston MT, Lee KH, Papoutsakis ET (2015) Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum. Biotechnol Biofuels 8:81CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang G, Wu P, Liu Y, Mi S, Mai S, Gu C, Wang G, Liu H, Zhang J, Børresen BT, Mellemsæther E, Kotlar HK (2015) Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH06. Appl Microbiol Biotechnol 99:8803–8813CrossRefPubMedGoogle Scholar
  35. Wang JP, Zhang WM, Chao HJ, Zhou NY (2017) PnpM, a LysR-type transcriptional regulator activates the hydroquinone pathway in para-nitrophenol degradation in Pseudomonas sp. strain WBC-3. Front Microbiol 8:1714CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wu P, Wang G, Wang G, Børresen BT, Liu H, Zhang J (2016) Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus. Microb Cell Factories 15:8CrossRefGoogle Scholar
  37. Zhang Y, Ezeji TC (2013) Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. Biotechnol Biofuels 6:66CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shuo Mi
    • 1
  • Chunkai Gu
    • 1
    • 2
  • Pengfei Wu
    • 1
    • 3
  • Hongjuan Liu
    • 1
  • Xiang Yan
    • 1
  • Dongyue Li
    • 1
  • Xiang Tang
    • 1
  • Xiaorui Duan
    • 1
    • 4
  • Genyu Wang
    • 1
    Email author
  • Jianan Zhang
    • 1
    Email author
  1. 1.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
  2. 2.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  3. 3.Life Science and Technology InstituteYantze Normal UniversityChongqingChina
  4. 4.Shanxi Provincial Guoxin Energy Development Group Co., LTDTaiyuan CityChina

Personalised recommendations