Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6373–6381 | Cite as

Synthesis and production of the antitumor polyketide aurovertins and structurally related compounds

  • Wei Li
  • Zihui Ma
  • Lin Chen
  • Wen-Bing Yin
Mini-Review

Abstract

Aurovertins belong to a family of highly reducing polyketides sharing a polyene α-pyrone-type structure. These compounds comprise aurovertin, asteltoxin, avertoxin, citreoviridin, verrucosidin, and their derivatives, which exihibit potent antitumor, antiviral, and antibacterial activities. Until now, over 40 aurovertins and structurally related compounds have been found in the fungal kingdom. Due to the unique structural feature and interesting bioactivities, significant progresses have been achieved for the structural identification, chemical synthesis, and biosynthesis of the mentioned compounds. Understanding of aurovertin biosynthetic mechanism provides a solid basis for engineering the metabolic pathway of those compounds by rational design and realizing their production in the model fungal host.

Keywords

Natural products Aurovertin Polyketide Antitumor activity Biosynthesis 

Notes

Acknowledgements

The authors would like to thank Prof. Shuming Li (Philipps-Universität Marburg, Germany) and Dr. Haining Lyu (Institute of Microbiology, CAS, China) for the helpful discussions about the manuscript. W.B.Y. is a scholar of “the 100 Talents Project” of CAS.

Funding information

This work was supported by the National Natural Science Foundation of China (31470178) and CAS/SAFEA International Partnership Program for Creative Research Teams.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adachi H, Doi H, Kasahara Y, Sawa R, Nakajima K, Kubota Y, Hosokawa N, Tateishi K, Nomoto A (2015) Asteltoxins from the entomopathogenic fungus Pochonia bulbillosa 8-H-28. J Nat Prod 78(7):1730–1734Google Scholar
  2. Azumi M, Ishidoh K, Kinoshita H, Nihira T, Ihara F, Fujita T, Igarashi Y (2008) Aurovertins F-H from the entomopathogenic fungus Metarhizium anisopliae. J Nat Prod 71(2):278–280CrossRefPubMedGoogle Scholar
  3. Baldwin CL, Nash HA, Osborne CE, Brooker RM, Weaver LC, Jacobsen TN (1964) Biological chemical properties of aurovertin - metabolic product of Calcarisporium arbuscula. Lloyd 27(2):88–89Google Scholar
  4. Bao J, Zhang XY, Xu XY, He F, Nong XH, Qi SH (2013) New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSGAF 0076. Tetrahedron 69(9):2113–2117CrossRefGoogle Scholar
  5. Bu YY, Yamazaki H, Takahashi O, Kirikoshi R, Ukai K, Namikoshi M (2016) Penicyrones A and B, an epimeric pair of alpha-pyrone-type polyketides produced by the marine-derived Penicillium sp. J Antibiot 69(1):57–61CrossRefPubMedGoogle Scholar
  6. Burka LT, Ganguli M, Wilson BJ (1983) Verrucosidin, a tremorgen from Penicillium verrucosum var cyclopium. J Chem Soc Chem Comm (9):544–545Google Scholar
  7. Chang HY, Huang TC, Chen NN, Huang HC, Juan HF (2014) Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 5:e1540CrossRefPubMedPubMedCentralGoogle Scholar
  8. Choo SJ, Park HR, Ryoo IJ, Kim JP, Yun BS, Kim CJ, Shin-ya K, Yoo ID (2005) Deoxyverrucosidin, a novel GRP78/BiP down-regulator, produced by Penicillium sp. J Antibiot 58(3):210–213CrossRefPubMedGoogle Scholar
  9. Cole RJ, Dorner JW, Cox RH, Hill RA, Cluter HG, Wells JM (1981) Isolation of citreoviridin from Penicillium charlesii cultures and molded pecan fragments. Appl Environ Microbiol 42(4):677–681PubMedPubMedCentralGoogle Scholar
  10. Cooke RJ, Venkataraman H, Cha JK (1988) Total synthesis of verrucosidin and citreoviridin. Abstr Pap Am Chem S 195:171Google Scholar
  11. da Rocha MW, Resck IS, Caldas ED (2015) Purification and full characterisation of citreoviridin produced by Penicillium citreonigrum in yeast extract sucrose (YES) medium. Food Addit Contam Part A, Chem Anal Control Expo Risk Assess 32(4):584–595CrossRefGoogle Scholar
  12. Dejesus AE, Steyn PS, Vleggaar R (1985) Application of 18O induced isotope effects in 13C NMR spectroscopy to the biosynthesis of asteltoxin. J Chem Soc Chem Comm (22):1633–1635Google Scholar
  13. Eom KD, Raman JV, Kim H, Cha JK (2003) Total synthesis of (+)-asteltoxin. J Am Chem Soc 125(18):5415–5421CrossRefPubMedGoogle Scholar
  14. Forbes JE, Pattenden G (1991) Total synthesis of preaurovertin, putative biogenetic precursor of aurovertin - biosynthetic interrelationships between the aurovertins, citreoviridinols and asteltoxin. J Chem Soc Perk T 1(8):1959–1966CrossRefGoogle Scholar
  15. Franck B, Gehrken HP (1980) Citreoviridins from Aspergillus terreus. Angew Chem 19(6):461–462CrossRefGoogle Scholar
  16. Frisvad JC, Seifert KA, Samson RA, Mills JT (1994) Penicillium tricolor, a new mold species from Canadian wheat. Can J Bot 72(7):933–939CrossRefGoogle Scholar
  17. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol (49):201–241Google Scholar
  18. Gause EM, Buck MA, Douglas MG (1981) Binding of citreoviridin to the beta subunit of the yeast F1-ATPase. J Biol Chem 256(2):557–559PubMedGoogle Scholar
  19. Gledhill JR, Walker JE (2005) Inhibition sites in F1-ATPase from bovine heart mitochondria. Biochem J 386(Pt 3):591–598CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo H, Feng T, Li Z-H, Liu J-K (2013) Ten new aurovertins from cultures of the basidiomycete Albatrellus confluens. Nat Prod Bioprospect 3(1):8–13CrossRefPubMedCentralGoogle Scholar
  21. Hatakeyama S, Ochi N, Takano S (1993) Enantioselective synthesis of the alpha-pyrone subunit of verrucosidin. Chem Pharm Bull 41(8):1358–1361CrossRefGoogle Scholar
  22. Hatakeyama S, Sakurai K, Numata H, Ochi N, Takano S (1988) A novel chiral route to substituted tetrahydrofurans—total synthesis of (+)-verrucosidin and formal synthesis of (-)-citreoviridin. J Am Chem Soc 110(15):5201–5203CrossRefGoogle Scholar
  23. Huang TC, Chang HY, Hsu CH, Kuo WH, Chang KJ, Juan HF (2008) Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res 7(4):1433–1444CrossRefPubMedGoogle Scholar
  24. Johnson KM, Swenson L, Opipari AW Jr, Reuter R, Zarrabi N, Fierke CA, Borsch M, Glick GD (2009) Mechanistic basis for differential inhibition of the F1F0-ATPase by aurovertin. Biopolymers 91(10):830–840CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kruger GJ, Steyn PS, Vleggaar R, Rabie CJ (1979) X-ray crystal-structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. J Chem Soc Chem Comm (10):441–442Google Scholar
  26. Lin TS, Chiang YM, Wang CC (2016) Biosynthetic pathway of the reduced polyketide product citreoviridin in Aspergillus terreus var. aureus revealed by heterologous expression in Aspergillus nidulans. Org Lett 18(6):1366–1369CrossRefPubMedGoogle Scholar
  27. Long H, Cheng Z, Huang W, Wu Q, Li X, Cui J, Proksch P, Lin W (2016) Diasteltoxins A-C, asteltoxin-based dimers from a mutant of the sponge-associated Emericella variecolor fungus. Org Lett 18(18):4678–4681CrossRefPubMedGoogle Scholar
  28. Lunardi J, Klein G, Vignais PV (1986) Interaction between aurovertin and adenine nucleotide binding sites on mitochondrial F1-ATPase and the isolated beta subunit. J Biol Chem 261(12):5350–5354PubMedGoogle Scholar
  29. Lund F, Frisvad JC (1994) Chemotaxonomy of Penicillium aurantiogriseum and related species. Mycol Res 98:481–492CrossRefGoogle Scholar
  30. Ma Z, Li W, Zhang P, Lyu H, Hu Y, Yin WB (2018) Rational design for heterologous production of aurovertin-type compounds in Aspergillus nidulans. Appl Microbiol Biotechnol 102(1):297–304CrossRefPubMedGoogle Scholar
  31. Mao XM, Xu W, Li D, Yin WB, Chooi YH, Li YQ, Tang Y, Hu Y (2015a) Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem 54(26):7592–7596CrossRefGoogle Scholar
  32. Mao XM, Zhan ZJ, Grayson MN, Tang MC, Xu W, Li YQ, Yin WB, Lin HC, Chooi YH, Houk KN, Tang Y (2015b) Efficient biosynthesis of fungal polyketides containing the dioxabicyclo-octane ring system. J Am Chem Soc 137(37):11904–11907CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mulzer J, Mohr JT (1994) Stereoselective synthesis of the bis-tetrahydrofuran fragment (C-1-C-9) of asteltoxin. J Organomet Chem 59(5):1160–1165CrossRefGoogle Scholar
  34. Nagel DW, Scott DB, Steyn PS (1972) Production of citreoviridin by Penicillium pulvillorum. Phytochemistry 11(2):627–628CrossRefGoogle Scholar
  35. Nishiyama S, Kanai H, Yamamura S (1990) Synthesis of optically-active hexahydrofuro[2,3-B]furan, a nonchromophore moiety of asteltoxin. B Chem Soc Jpn 63(5):1322–1327CrossRefGoogle Scholar
  36. Nishiyama S, Shizuri Y, Yamamura S (1985) Total synthesis and the absolute configuration of citreoviral and citreoviridin. Tetrahedron Lett 26(2):231–234CrossRefGoogle Scholar
  37. Nishiyama S, Toshima H, Kanai H, Yamamura S (1986) Total synthesis and the absolute configuration of aurovertin B. Tetrahedron Lett 27(31):3643–3646CrossRefGoogle Scholar
  38. Niu XM, Wang YL, Chu YS, Xue HX, Li N, Wei LX, Mo MH, Zhang KQ (2010) Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. J Agric Food Chem 58(2):828–834CrossRefPubMedGoogle Scholar
  39. Pan C, Shi Y, Auckloo BN, Chen X, Chen CT, Tao X, Wu B (2016) An unusual conformational isomer of verrucosidin backbone from a hydrothermal vent fungus, Penicillium sp. Y-50-10. Mar Drugs 14(8):156CrossRefPubMedCentralGoogle Scholar
  40. Park HR, Ryoo IJ, Choo SJ, Hwang JH, Kim JY, Cha MR, Shin-Ya K, Yoo ID (2007) Glucose-deprived HT-29 human colon carcinoma cells are sensitive to verrucosidin as a GRP78 down-regulator. Toxicol 229(3):253–261CrossRefGoogle Scholar
  41. Patel P, Pattenden G (1991) Total synthesis of citreomontanin, a putative polyene precursor to citreoviridin and citreoviridinol produced by Penicillium sp. J Chem Soc Perk T 1(8):1941–1945CrossRefGoogle Scholar
  42. Raman JV, Lee HK, Vleggaar R, Cha JK (1995) A formal synthesis of (+)-asteltoxin. Tetrahedron Lett 36(18):3095–3098CrossRefGoogle Scholar
  43. Reddy BVS, Narasimhulu G, Reddy YV, Chakravarthy PP, Yadav JS, Sridhar B (2012) Sc(OTf)(3)/TsOH: a highly efficient catalytic system for the synthesis of 2,6-dioxabicyclo[3,2,1]octane derivatives. Tetrahedron Lett 53(24):3100–3103CrossRefGoogle Scholar
  44. Rosa CA, Keller KM, Oliveira AA, Almeida TX, Keller LA, Marassi AC, Kruger CD, Deveza MV, Monteiro BS, Nunes LM, Astoreca A, Cavaglieri LR, Direito GM, Eifert EC, Lima TA, Modernell KG, Nunes FI, Garcia AM, Luz MS, Oliveira DC (2010) Production of citreoviridin by Penicillium citreonigrum strains associated with rice consumption and beriberi cases in the Maranhao State, Brazil. Food Addit Contam Part A: Chem Anal Control Expo Risk Assess 27(2):241–248Google Scholar
  45. Sabater-Vilar M, Nijmeijer S, Fink-Gremmels J (2003) Genotoxicity assessment of five tremorgenic mycotoxins (fumitremorgen B, paxilline, penitrem A, verruculogen, and verrucosidin) produced by molds isolated from fermented meats. J Food Prot 66(11):2123–2129CrossRefPubMedGoogle Scholar
  46. Sakabe N, Goto T, Hirata Y (1964) The structure of citreoviridin, a toxic compound produced by p-citreoviride molded on rice. Tetrahedron Lett 5(27-8):1825–1830CrossRefGoogle Scholar
  47. Sayood SF, Suh H, Wilcox CS, Schuster SM (1989) Effect of citreoviridin and isocitreoviridin on beef heart mitochondrial ATPase. Arch Biochem Biophys 270(2):714–721CrossRefPubMedGoogle Scholar
  48. Schreiber SL, Satake K (1983) Application of the furan carbonyl photocycloaddition reaction to the synthesis of the bis(tetrahydrofuran) moiety of asteltoxin. J Am Chem Soc 105(22):6723–6724CrossRefGoogle Scholar
  49. Schreiber SL, Satake K (1984) Total synthesis of (+/−)-asteltoxin. J Am Chem Soc 106(15):4186–4188CrossRefGoogle Scholar
  50. Schreiber SL, Satake K (1986) Studies of the furan-carbonyl photocycloaddition reaction - the determination of the absolute stereostructure of asteltoxin. Tetrahedron Lett 27(23):2575–2578CrossRefGoogle Scholar
  51. Shiratori N, Kobayashi N, Tulayakul P, Sugiura Y, Takino M, Endo O, Sugita-Konishi Y (2017) Occurrence of Penicillium brocae and Penicillium citreonigrum, which produce a mutagenic metabolite and a mycotoxin citreoviridin, respectively, in selected commercially available rice grains in Thailand. Toxins 9(6):E194CrossRefPubMedGoogle Scholar
  52. Steyn PS, Vleggaar R (1984) Biosynthesis of asteltoxin by cultures of Emericella variecolor - the role of propionate in the biosynthesis and evidence for a 1,2-bond migration in the formation of the bistetrahydrofuran moiety. J Chem Soc Chem Comm (15):977–979Google Scholar
  53. Steyn PS, Vleggaar R (1985) Mechanistic studies on the biosynthesis of the aurovertins using 18O-labeled precursors. J Chem Soc Chem Comm (24):1796–1798Google Scholar
  54. Steyn PS, Vleggaar R, Wessels PL (1981) Biosynthesis of the aurovertin B and aurovertin D. The role of methionine and propionate in the simultaneous operation of 2 independent biosynthetic pathways. J Chem Soc Perk T 1(4):1298–1308CrossRefGoogle Scholar
  55. Suh HS, Wilcox CS (1988) Chemistry of F1,F0-Atpase inhibitors. Stereoselective total syntheses of (+)-citreoviral and (-)-citreoviridin. J Am Chem Soc 110(2):470–481CrossRefGoogle Scholar
  56. Tadano K, Yamada H, Idogaki Y, Ogawa S, Suami T (1988) Stereoselective synthesis of the bis(tetrahydrofuran) moiety (C-1 to C-9) of (+)-asteltoxin, a novel mycotoxin from Aspergillus stellatus. Tetrahedron Lett 29(6):655–658CrossRefGoogle Scholar
  57. Tadano K, Yamada H, Idogaki Y, Ogawa S, Suami T (1990) Total synthesis of (+)-asteltoxin. Tetrahedron 46(7):2353–2366CrossRefGoogle Scholar
  58. Tian YQ, Lin XP, Wang Z, Zhou XF, Qin XC, Kaliyaperumal K, Zhang TY, Tu ZC, Liu YH (2016) Asteltoxins with antiviral activities from the marine sponge-derived fungus Aspergillus sp. SCSIO XWS02F40. Molecules 21(1):34Google Scholar
  59. van Raaij MJ, Abrahams JP, Leslie AG, Walker JE (1996) The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci U S A 93(14):6913–6917CrossRefPubMedPubMedCentralGoogle Scholar
  60. Varga J, Frisvad JC, Samson RA (2010) Aspergillus sect. Aeni sect. nov., a new section of the genus for A. karnatakaensis sp nov and some allied fungi. Ima Fungus 1(2):197–205CrossRefPubMedPubMedCentralGoogle Scholar
  61. Vieta I, Savarino A, Papa G, Vidotto V, Cantamessa C, Pugliese A (1996) In vitro inhibitory activity of citreoviridin against HIV-1 and an HIV-associated opportunist: Candida albicans. J Chemother 8(5):351–357CrossRefPubMedGoogle Scholar
  62. Vleggaar R (1986) Biosynthetic studies on some polyene mycotoxins. Pure Appl Chem 58(2):239–256CrossRefGoogle Scholar
  63. Wang F, Luo DQ, Liu JK (2005) Aurovertin E, a new polyene pyrone from the basidiomycete Albatrellus confluens. J Antibiot 58(6):412–415CrossRefPubMedGoogle Scholar
  64. Wang JF, Wei XY, Qin XC, Tian XP, Liao L, Li KM, Zhou XF, Yang XW, Wang FZ, Zhang TY, Tu ZC, Chen B, Liu YH (2016) Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod 79(1):59–65CrossRefPubMedGoogle Scholar
  65. Wang MZ, Sun MW, Hao HL, Lu CH (2015a) Avertoxins A-D, prenyl asteltoxin derivatives from Aspergillus versicolor Y10, an endophytic fungus of Huperzia serrata. J Nat Prod 78(12):3067–3070CrossRefPubMedGoogle Scholar
  66. Wang YL, Li LF, Li DX, Wang B, Zhang K, Niu X (2015b) Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. J Agric Food Chem 63(29):6577–6587CrossRefPubMedGoogle Scholar
  67. Whang K, Cooke RJ, Okay G, Cha JK (1990) Total synthesis of (+)-verrucosidin. J Am Chem Soc 112(24):8985–8987CrossRefGoogle Scholar
  68. Williams DR, White FH (1987) Total synthesis of (+/-)-citreoviridin. J Organomet Chem 52(23):5067–5079CrossRefGoogle Scholar
  69. Wong KK, Ho MT, Lin HQ, Lau KF, Rudd JA, Chung RC, Fung KP, Shaw PC, Wan DC (2010) Cryptotanshinone, an acetylcholinesterase inhibitor from Salvia miltiorrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Med 76(3):228–234CrossRefPubMedGoogle Scholar
  70. Wu Q, Long HL, Liu D, Proksch P, Lin WH (2015) Varioxiranols I-L, new lactones from a sponge-associated Emericella variecolor fungus. J Asian Nat Prod Res 17(12):1137–1145CrossRefPubMedGoogle Scholar
  71. Yassin MA, El-Samawaty AR, Bahkali A, Moslem M, Abd-Elsalam KA, Hyde KD (2010) Mycotoxin-producing fungi occurring in sorghum grains from Saudi Arabia. Fungal Divers 44(1):45–52CrossRefGoogle Scholar
  72. Yu K, Ren B, Wei J, Chen C, Sun J, Song F, Dai H, Zhang L (2010) Verrucisidinol and verrucosidinol acetate, two pyrone-type polyketides isolated from a marine derived fungus, Penicillium aurantiogriseum. Mar Drugs 8(11):2744–2754CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhang Y, Feng Y, Kramer M, Essmann F, Grond S (2017) A new acetylenic compound and other bioactive metabolites from a shark gill-derived Penicillium strain. Rec Nat Prod 11(1):31–36Google Scholar
  74. Zhao H, Wu R, Ma LF, Wo LK, Hu YY, Chen C, Zhan ZJ (2016) Aurovertin-type polyketides from Calcarisporium arbuscula with potent cytotoxic activities against triple-negative breast cancer. Helv Chim Acta 99(7):543–546CrossRefGoogle Scholar
  75. Zhou ZY, Liu R, Jiang MY, Zhang L, Niu Y, Zhu YC, Dong ZJ, Liu JK (2009) Two new cleistanthane diterpenes and a new isocoumarine from cultures of the basidiomycete Albatrellus confluens. Chem Pharm Bull 57(9):975–978CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Zhengzhou Key Laboratory of Medicinal Resources Research Institute of Nanostructured Functional MaterialsHuanghe Science and Technology CollegeZhengzhouChina

Personalised recommendations