Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6613–6625 | Cite as

Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase

  • Rabeaa S. Alkhateeb
  • Frank-Jörg Vorhölter
  • Tim Steffens
  • Christian Rückert
  • Vera Ortseifen
  • Gerd Hublik
  • Karsten Niehaus
  • Alfred Pühler
Genomics, transcriptomics, proteomics

Abstract

The ɣ-proteobacterium Xanthomonas campestris pv. campestris (Xcc) is the producer of the biopolymer xanthan, a polysaccharide which is used as a thickener in numerous industrial applications. In this study, we present a global transcriptome profiling of two Xcc strain B100 cultures obtained from fermentation during the growth phase and the subsequent stationary phase associated with xanthan biosynthesis. During the xanthan production phase, highly abundant transcripts belonged to genes encoding for small RNAs, glycogen biosynthesis, and xanthan export. A total of 1850 (40%) genes were differentially transcribed during the stationary phase where 924 were transcriptionally up-regulated and 926 genes were down-regulated. An overview of differentially transcribed genes includes a significant down-regulation of genes involved in transcription, translation, and amino acid biosynthesis pathways. A group of up-regulated genes was involved in cellular response against oxidative stress, such as those coding for superoxide dismutase and catalase. Genes encoding enzymes involved in nucleotide sugar precursor synthesis of xanthan biosynthesis, such as xanA, galU, and ugd, exhibited a transcription pattern that did not change during the growth and stationary phase. Regarding the transcription pattern of the gum gene cluster that govern xanthan biosynthesis, a significant up-regulation of the genes gumB, gumC, and gumD was observed, while the transcript pools of the genes gumG, gumH, gumI, and gumJ were reduced and those of genes gumE, gumF, gumK, gumL, and gumM remained un-changed during the stationary phase compared to the growth phase. The obtained data represents the first analysis of gene expression patterns under xanthan production conditions and provides the bases for future studies aiming at enhancing xanthan yield.

Keywords

Xanthan biosynthesis RNA sequencing Differential transcriptomics Xanthomonas Plant pathogen 

Notes

Acknowledgments

R.S. Alkhateeb and T. Steffens acknowledge the support from the CLIB Graduate Cluster Industrial Biotechnology at Bielefeld University as associate fellows. The bioinformatics support of the BMBF-funded project Bielefeld-Gießen Center for Microbial Bioinformatics—BiGi within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

Funding information

This study was funded by a Ph.D. grant received from Jungbunzlauer AG, Austria to the CLIB Graduate Cluster Industrial Biotechnology.

The authors would like to thank our co-operation partners from Jungbunzlauer AG, Austria, for granting the financial support to this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9106_MOESM1_ESM.xls (7.5 mb)
ESM 1 (XLS 7645 kb)
253_2018_9106_MOESM2_ESM.xlsx (1.1 mb)
ESM 2 (XLSX 1123 kb)
253_2018_9106_MOESM3_ESM.pdf (368 kb)
ESM 3 (PDF 368 kb)

References

  1. Alkhateeb RS, Vorhölter FJ, Rückert C, Mentz A, Wibberg D, Hublik G, Niehaus K, Pühler A (2016) Genome wide transcription start sites analysis of Xanthomonas campestris pv. campestris B100 with insights into the gum gene cluster directing the biosynthesis of the exopolysaccharide xanthan. J Biotechnol 225:18–28.  https://doi.org/10.1016/j.jbiotec.2016.03.020 CrossRefPubMedGoogle Scholar
  2. Alkhateeb RS, Rückert C, Rupp O, Pucker B, Hublik G, Wibberg D, Niehaus K, Pühler A, Vorhölter FJ (2017) Refined annotation of the complete genome of the phytopathogenic and xanthan producing Xanthomonas campestris pv. campestris strain B100 based on RNA sequence data. J Biotechnol 253:55–61.  https://doi.org/10.1016/j.jbiotec.2017.05.009 CrossRefPubMedGoogle Scholar
  3. An SQ, Febrer M, McCarthy Y, Tang DJ, Clissold L, Kaithakottil G, Swarbreck D, Tang JL, Rogers J, Dow JM, Ryan RP (2013) High-resolution transcriptional analysis of the regulatory influence of cell-to-cell signalling reveals novel genes that contribute to Xanthomonas phytopathogenesis. Mol Microbiol 88:1058–1069.  https://doi.org/10.1111/mmi.12229 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Artsimovitch I, Patlan V, Sekine S, Vassylyeva MN, Hosaka T, Ochi K, Yokoyama S, Vassylyev DG (2004) Structural basis for transcription regulation by alarmone ppGpp. Cell 117:299–310.  https://doi.org/10.1016/S0092-8674(04)00401-5 CrossRefPubMedGoogle Scholar
  5. Asad NR, Asad LM, Silva AB, Felzenszwalb I, Leitão AC (1998) Hydrogen peroxide effects in Escherichia coli cells. Acta Biochim Pol 45:677–690PubMedGoogle Scholar
  6. Becker A, Katzen F, Pühler A, Ielpi L (1998) Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol 50:145–152.  https://doi.org/10.1007/s002530051269 CrossRefPubMedGoogle Scholar
  7. Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M (2007) Plant carbohydrate scavenging through tonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One 2:e224.  https://doi.org/10.1371/journal.pone.0000224 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, García-Ros D, Gamazo C (2000) The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis. FEMS Microbiol Lett 191:31–36.  https://doi.org/10.1111/j.1574-6968.2000.tb09315.x CrossRefPubMedGoogle Scholar
  9. Braun SG, Meyer A, Holst O, Pühler A, Niehaus K (2005) Characterization of the Xanthomonas campestris pv. campestris lipopolysaccharide substructures essential for elicitation of an oxidative burst in tobacco cells. Mol Plant-Microbe Interact 18:674–681.  https://doi.org/10.1094/MPMI-18-0674 CrossRefPubMedGoogle Scholar
  10. Capage MR, Doherty DH, Betlach MR, Vanderslice RW (1987) Recombinant-DNA mediated production of xanthan gum. In: International patent WO87/05938Google Scholar
  11. Carlioz A, Touati D (1986) Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life? EMBO J 5:623–630PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt FC, Curtiss RIII, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC, pp 1458–1496Google Scholar
  13. Charoenlap N, Sornchuer P, Piwkam A, Srijaruskul K, Mongkolsuk S, Vattanaviboon P (2015) The roles of peroxide protective regulons in protecting Xanthomonas campestris pv. campestris from sodium hypochlorite stress. Can J Microbiol 6:343–350.  https://doi.org/10.1139/cjm-2014-0792 CrossRefGoogle Scholar
  14. Chou FL, Chou HC, Lin YS, Yang BY, Lin NT, Weng SF, Tseng YH (1997) The Xanthomonas campestris gumD gene required for synthesis of xanthan gum is involved in normal pigmentation and virulence in causing black rot. Biochem Biophys Res Commun 233:265–269.  https://doi.org/10.1006/bbrc.1997.6365 CrossRefPubMedGoogle Scholar
  15. de Lorenzo V, Giovannini F, Herrero M, Neilands JB (1988) Metal ion regulation of gene expression. Fur repressor-operator interaction at the promoter region of the aerobactin system of pColV-K30. J Mol Biol 203:875–884.  https://doi.org/10.1016/0022-2836(88)90113-1 CrossRefPubMedGoogle Scholar
  16. Deghmane AE, Giorgini D, Larribe M, Alonso JM, Taha MK (2002) Down-regulation of pili and capsule of Neisseria meningitides upon contact with epithelial cells is mediated by CrgA regulatory protein. Mol Microbiol 43:1555–1564.  https://doi.org/10.1046/j.1365-2958.2002.02838.x CrossRefPubMedGoogle Scholar
  17. Febrer M, McLay K, Caccamo M, Twomey KB, Ryan RP (2011) Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing. Trends Biotechnol 29:586–594.  https://doi.org/10.1016/j.tibtech.2011.06.004 CrossRefPubMedGoogle Scholar
  18. Galván EM, Ielmini MV, Patel YN, Bianco MI, Franceschini EA, Schneider JC, Ielpi L (2013) Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB. Glycobiology 23:259–272.  https://doi.org/10.1093/glycob/cws146 CrossRefPubMedGoogle Scholar
  19. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579.  https://doi.org/10.1016/S0734-9750(00)00050-1 CrossRefPubMedGoogle Scholar
  20. Hantke K (1981) Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292CrossRefPubMedGoogle Scholar
  21. Harding NE, Cleary JM, Ielpi L (1995) Genetics and biochemistry of xanthan gum production by Xanthomonas campestris. In: Hui YH, Khachatourians GG (eds) Food biotechnology: microorganisms. ASM Press, Washington, pp 253–262Google Scholar
  22. Held KG, Postle K (2002) ExbB and ExbD do not function independently in TonB-dependent energy transduction. J Bacteriol 184:5170–5173.  https://doi.org/10.1128/JB.184.18.5170-5173 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hilker R, Stadermann KB, Doppmeier D, Kalinowski J, Stoye J, Straube J, Winnebald J, Goesmann A (2014) ReadXplorer—visualization and analysis of mapped sequences. Bioinformatics 30:2247–2254.  https://doi.org/10.1093/bioinformatics/btu205 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hublik G (2012) Xanthan. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference. Elsevier BV, Amsterdam, pp 221–229CrossRefGoogle Scholar
  25. Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454.  https://doi.org/10.1038/nrmicro3032 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jacobs M, Salinas SR, Bianco MI, Ielpi L (2012) Expression, purification and crystallization of the outer membrane lipoprotein GumB from Xanthomonas campestris. Acta Crystallogr Sect F Struct Biol Cryst Commun 68:1255–1258.  https://doi.org/10.1107/S1744309112036597 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N (2013) Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14:551.  https://doi.org/10.1186/1471-2164-14-551 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jansson PE, Kenne L, Lindberg B (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45:275–282.  https://doi.org/10.1016/S0008-6215(00)85885-1 CrossRefPubMedGoogle Scholar
  29. Katzen F, Becker A, Zorreguieta A, Pühler A, Ielpi L (1996) Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 178:4313–4318.  https://doi.org/10.1128/jb.178.14.4313-4318 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Katzen F, Ferreiro DU, Oddo CG, Ielmini MV, Becker A, Pühler A, Ielpi L (1998) Xanthomonas campestris pv. campestris gum mutants: effects on xanthan biosynthesis and plant virulence. J Bacteriol 180:1607–1617Google Scholar
  31. Keyer K, Imlay JA (1996) Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 93:13635–13640CrossRefPubMedPubMedCentralGoogle Scholar
  32. Klomsiri C, Panmanee W, Dharmsthiti S, Vattanaviboon P, Mongkolsuk S (2005) Novel roles of ohrR-ohr in Xanthomonas sensing, metabolism, and physiological adaptive response to lipid hydroperoxide. J Bacteriol 187:3277–3281.  https://doi.org/10.1128/JB.187.9.3277-3281.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Köplin R, Arnold W, Hötte B, Simon R, Wang G, Pühler A (1992) Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol 174:191–199.  https://doi.org/10.1128/jb.174.1.191-199 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Köplin R, Wang G, Hötte B, Priefer UB, Pühler A (1993) A 3.9-kb DNA region of Xanthomonas campestris pv. campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 175:7786–7792.  https://doi.org/10.1128/jb.175.24.7786-7792 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kovaleva GY, Gelfand MS (2007) Transcriptional regulation of the methionine and cysteine transport and metabolism in streptococci. FEMS Microbiol Lett 276:207–215.  https://doi.org/10.1111/j.1574-6968.2007.00934.x CrossRefPubMedGoogle Scholar
  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Laub MT, Goulian M (2007) Specificity in two-component signal transduction pathways. Annu Rev Genet 41:121–145.  https://doi.org/10.1146/annurev.genet.41.042007.170548 CrossRefPubMedGoogle Scholar
  38. Lee JW, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20(3–4):485–499.  https://doi.org/10.1007/s10534-006-9070-7 CrossRefPubMedGoogle Scholar
  39. Leßmeier L, Alkhateeb RS, Schulte F, Steffens T, Loka TP, Pühler A, Niehaus K, Vorhölter FJ (2016) Applying DNA affinity chromatography to specifically screen for sucrose-related DNA-binding transcriptional regulators of Xanthomonas campestris. J Biotechnol 232:89–98.  https://doi.org/10.1016/j.jbiotec.2016.04.007 CrossRefPubMedGoogle Scholar
  40. Letisse F, Chevallereau P, Simon JL, Lindley N (2002) The influence of metabolic network structures and energy requirements on xanthan gum yields. J Biotechnol 99:307–317.  https://doi.org/10.1016/S0168-1656(02)00221-3 CrossRefPubMedGoogle Scholar
  41. Liang H, Zhao YT, Zhang JQ, Wang XJ, Fang RX, Jia YT (2011) Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae. BMC Genomics 12:87.  https://doi.org/10.1186/1471-2164-12-87 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394Google Scholar
  43. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550.  https://doi.org/10.1186/s13059-014-0550-8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marroquí S, Zorreguieta A, Santamaría C, Temprano F, Soberón M, Megías M, Downie JA (2001) Enhanced symbiotic performance by Rhizobium tropici glycogen synthase mutants. J Bacteriol 183:854–864.  https://doi.org/10.1128/JB.183.3.854-864.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  45. McMeechan A, Lovell MA, Cogan TA, Marston KL, Humphrey TJ, Barrow PA (2005) Glycogen production by different Salmonella enterica serotypes: contribution of functional glgC to virulence, intestinal colonization and environmental survival. Microbiology 151:3969–3977CrossRefPubMedGoogle Scholar
  46. Molinaro A, Silipo A, Lanzetta R, Newman MA, Dow JM, Parrilli M (2003) Structural elucidation of the O-chain of the lipopolysaccharide from Xanthomonas campestris strain 8004. Carbohydr Res 338:277–281.  https://doi.org/10.1016/S0008-6215(02)00433-0 CrossRefPubMedGoogle Scholar
  47. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628.  https://doi.org/10.1038/nmeth.1226
  48. Musa YR, Bäsell K, Schatschneider S, Vorhölter FJ, Becher D, Niehaus K (2013) Dynamic protein phosphorylation during the growth of Xanthomonas campestris pv. campestris B100 revealed by a gel-based proteomics approach. J Biotechnol 167:111–122.  https://doi.org/10.1016/j.jbiotec.2013.06.009 CrossRefPubMedGoogle Scholar
  49. Noinaj N, Guillier M, Barnard TJ, Buchanan SK (2010) TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60.  https://doi.org/10.1146/annurev.micro.112408.134247 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Paoli GC, Soyer F, Shively J, Tabita FR (1998) Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by ahorizontal gene transfer. Microbiology 144:219–227.  https://doi.org/10.1099/00221287-144-1-219 CrossRefPubMedGoogle Scholar
  51. Preiss J (1984) Bacterial glycogen synthesis and its regulation. Annu Rev Microbiol 38:419–458.  https://doi.org/10.1146/annurev.mi.38.100184.002223 CrossRefPubMedGoogle Scholar
  52. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700.  https://doi.org/10.1146/annurev.biochem.71.110601.135414 CrossRefPubMedGoogle Scholar
  53. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356.  https://doi.org/10.1128/MMBR.69.2.326-356.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Romeo T, Black J, Preiss J (1990) Genetic regulation of glycogen biosynthesis in Escherichia coli: in vivo effects of the catabolite repression and stringent response systems in glg gene expression. Curr Microbiol 21:131–137.  https://doi.org/10.1007/BF02091831 CrossRefGoogle Scholar
  55. Rončević ZZ, Bajić BŽ, Dodić SN, Grahovac JA, Dodić JM (2017) Xanthan production on wastewaters from wine industry. Hem Ind 71:145–153.  https://doi.org/10.2298/HEMIND160401025R CrossRefGoogle Scholar
  56. Rühl M, Le-Coq D, Aymerich S, Sauer U (2012) 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 287:27959–27970.  https://doi.org/10.1074/jbc.M112.366492 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Schatschneider S, Persicke M, Watt SA, Hublik G, Pühler A, Niehaus K, Vorhölter FJ (2013) Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 167:123–134.  https://doi.org/10.1016/j.jbiotec.2013.01.023 CrossRefPubMedGoogle Scholar
  58. Schatschneider S, Huber C, Neuweger H, Watt TF, Pühler A, Eisenreich W, Wittmann C, Niehaus K, Vorhölter FJ (2014) Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Mol BioSyst 10:2663–2676.  https://doi.org/10.1039/c4mb00198b CrossRefPubMedGoogle Scholar
  59. Schmidtke C, Abendroth U, Brock J, Serrania J, Becker A, Bonas U (2013) Small RNA sX13: a multifaceted regulator of virulence in the plant pathogen Xanthomonas. PLoS Pathog 9:e1003626.  https://doi.org/10.1371/journal.ppat.1003626 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Souw P, Demain AL (1979) Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Appl Environ Microbiol 37:1186–1192PubMedPubMedCentralGoogle Scholar
  61. Steffens T, Vorhölter FJ, Giampà M, Hublik G, Pühler A, Niehaus K (2016) The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiol 16:93.  https://doi.org/10.1186/s12866-016-0710-y CrossRefPubMedPubMedCentralGoogle Scholar
  62. Stojiljkovic I, Bäumler AJ, Hantke K (1994) Fur regulon in Gram-negative bacteria. Identification and characterization of new iron-regulated genes by a fur titration assay. J Mol Biol 236:531–545.  https://doi.org/10.1006/jmbi.1994.1163 CrossRefPubMedGoogle Scholar
  63. Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A 88:4690–4694CrossRefPubMedPubMedCentralGoogle Scholar
  64. Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Smith JT, Conway T (2008) The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68:1128–1148.  https://doi.org/10.1111/j.1365-2958.2008.06229.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18.  https://doi.org/10.1111/j.1364-3703.2012.00833.x CrossRefPubMedGoogle Scholar
  66. Vojnov AA, Zorreguieta A, Dow JM, Daniels MJ, Dankert MA (1998) Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology 144:1487–1493.  https://doi.org/10.1099/00221287-144-6-1487 CrossRefPubMedGoogle Scholar
  67. Vojnov AA, Slater H, Daniels MJ, Dow JM (2001) Expression of the gum operon directing xanthan biosynthesis in Xanthomonas campestris and its regulation in planta. Mol Plant-Microbe Interact 14:768–774.  https://doi.org/10.1094/MPMI.2001.14.6.768 CrossRefPubMedGoogle Scholar
  68. Vorhölter FJ, Niehaus K, Pühler A (2001) Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Gen Genomics 266:79–95.  https://doi.org/10.1007/s004380100521 CrossRefGoogle Scholar
  69. Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45.  https://doi.org/10.1016/j.jbiotec.2007.12.013 CrossRefPubMedGoogle Scholar
  70. Vorhölter FJ, Wiggerich HG, Scheidle H, Sidhu VK, Mrozek K, Küster H, Pühler A, Niehaus K (2012) Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases. BMC Microbiol 12:239.  https://doi.org/10.1186/1471-2180-12-239 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wiggerich HG, Pühler A (2000) The exbD2 gene as well as the iron-uptake genes tonB, exbB and exbD1 of Xanthomonas campestris pv. campestris are essential for the induction of a hypersensitive response on pepper (Capsicum annuum). Microbiology 146:1053–1060.  https://doi.org/10.1099/00221287-146-5-1053 CrossRefPubMedGoogle Scholar
  72. Wiggerich HG, Klauke B, Köplin R, Priefer UB, Pühler A (1997) Unusual structure of the tonB-exb DNA region of Xanthomonas campestris pv. campestris: tonB, exbB, and exbD1 are essential for ferric iron uptake, but exbD2 is not. J Bacteriol 179:7103–7110.  https://doi.org/10.1128/jb.179.22.7103-7110. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Williams PH (1980) Black rot: a continuing threat to world crucifers. Plant Dis 64:736–742CrossRefGoogle Scholar
  74. Zhang F, Du Z, Huang L, Vera-Cruz C, Zhou Y, Li Z (2013) Comparative transcriptome profiling reveals different expression patterns in Xanthomonas oryzae pv. oryzae strains with putative virulence-relevant genes. PLoS One 8:e64267.  https://doi.org/10.1371/journal.pone.0064267 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
  2. 2.Department of Proteomics and Metabolomics, Faculty of BiologyBielefeld UniversityBielefeldGermany
  3. 3.MVZ Dr. Eberhard & Partner DortmundDortmundGermany
  4. 4.Xell AGBielefeldGermany
  5. 5.Technology Platform Genomics, Center for Biotechnology (CeBiTec)Bielefeld UniversityBielefeldGermany
  6. 6.Jungbunzlauer Austria AGWulzeshofenAustria

Personalised recommendations