Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6525–6536 | Cite as

Biochemical and proteomic characterization of the extracellular enzymatic preparate of Exiguobacterium undae, suitable for efficient animal glue removal

  • Lenka Jeszeová
  • Vladena Bauerová-Hlinková
  • Peter Baráth
  • Andrea Puškárová
  • Mária Bučková
  • Lucia Kraková
  • Domenico Pangallo
Biotechnologically relevant enzymes and proteins
  • 116 Downloads

Abstract

In this work, we describe the preparation and characterization of a biopreparate for efficient and rapid animal glue removal. The biopreparate is based on the extracellular proteolytic enzymes of an Exiguobacterium undae environmental isolate. Liquid chromatography-mass spectrometry analysis showed that the biopreparate is predominantly composed of hydrolytic enzymes—proteases and peptidases, nucleases, peptide ABC transporter substrate-binding proteins, and a phosphatase. The two main proteins present are bacillolysin and a peptide ABC transporter substrate-binding protein. Inhibition and proteomic analyses of the biopreparate revealed that bacillolysin, a neutral metalloendopeptidase, is mainly responsible for its proteolytic activity. This biopreparate was able to satisfactorily remove two types of animal glue from different kinds of material surfaces. These results suggest that this biopreparate could serve as a potential new tool for the restoration of historical objects rather than living microorganisms.

Keywords

Exiguobacterium undae Animal glue Biodegradation Bacillolysin Extracellular proteome Liquid chromatography-mass spectrometry 

Notes

Acknowledgements

The authors thank Dr. Zdenek Voburka (Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences, Prague, Czech Republic) for N-terminal sequencing and Dr. Jacob A. Bauer for discussion and manuscript revision.

Funding information

The work was financially supported by the grant APVV-15-0528 “Modified polymers from renewable resources and their degradation.” This contribution is also the result of the project ITMS-26240220010 in the frame of the support program Research and Development of the European Regional Development Fund. A Slovak patent application form, No. PP50012-2018, has been applied for the E. undae biopreparate.

Compliance with ethical standards

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_9105_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1218 kb)

References

  1. Ahmed HE, Kolisis FN (2012) A study on using of protease for removal of animal glue adhesive in textile conservation. J Appl Polym Sci 124:3565–3576CrossRefGoogle Scholar
  2. Barbabietola N, Tasso F, Alisi C, Marconi P, Perito B, Pasquariello G, Sprocati AR (2016) A safe microbe-based procedure for a gentle removal of aged animal glues from ancient paper. Int Biodeterior Biodegrad 109:53–60CrossRefGoogle Scholar
  3. Baú D, Martin AJM, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinformatics 7:402CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bozec L, van der Heijden G, Horton M (2007) Collagen fibrils: nanoscale ropes. Biophys J 92:70–75CrossRefPubMedGoogle Scholar
  6. Buehler MJ (2006) Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci U S A 103:12285–12290CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen S, Hong Y, Shao Z, Liu Z (2010) A cold-active β-glucosidase (Bgl1C) from a sea bacteria Exiguobacterium oxidotolerans A011. World J Microbiol Biotechnol 26:1427–1435CrossRefGoogle Scholar
  8. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K (2009) Improved visualization of protein consensus sequences by iceLogo. Nat Methods 6:786–787CrossRefPubMedGoogle Scholar
  9. Collins MD, Lund BM, Farrow JAE, Schleifer KH (1983) Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov. Microbiology 129:2037–2042CrossRefGoogle Scholar
  10. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  11. Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dürrschmidt P, Mansfeld J, Ulbrich-Hofmann R (2010) Refolding of the non-specific neutral protease from Bacillus stearothermophilus proceeds via an autoproteolytically sensitive intermediate. Biophys Chem 147:66–73CrossRefPubMedGoogle Scholar
  13. Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M (2017) Production of recombinant antimicrobial polymeric protein Beta casein-E 50-52 and its antimicrobial synergistic effects assessment with thymol. Molecules 22:E822CrossRefPubMedGoogle Scholar
  14. Frigerio F, Margarit I, Nogarotto R, de Filippis V, Grandi G (1996) Cumulative stabilizing effects of hydrophobic interactions on the surface of the neutral protease from Bacillus subtilis. Protein Eng 9:439–445CrossRefPubMedGoogle Scholar
  15. Gao X, Wang J, Yu D-Q, Bian F, Xie B-B, Chen X-L, Zhou B-CH, Lai L-H, Wang Z-X, Wu J-W, Zhan Y-Z (2010) Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. PNAS 12:17569–17574CrossRefGoogle Scholar
  16. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. (In) J M. Walker (ed): The proteomics protocols handbook, Humana Press, pp. 571–607Google Scholar
  17. Harada J, Takaku S, Watanabe K (2012) An on-demand metalloprotease from psychro-tolerant Exiguobacterium undae Su-1, the activity and stability of which are controlled by the Ca2+ concentration. Biosci Biotechnol Biochem 76:986–992CrossRefPubMedGoogle Scholar
  18. Harrison SM, Kaml I, Prokoratova V, Mazanek M, Kenndler E (2005) Animal glues in mixtures of natural binding media used in artistic and historic objects: identification by capillary zone electrophoresis. Anal Bioanal Chem 382:1520–1526CrossRefPubMedGoogle Scholar
  19. Harth L, Krah U, Linke D, Dunkel A, Hofmann T, Berger RG (2016) Salt taste enhancing l-arginyl dipeptides from casein and lysozyme released by peptidases of Basidiomycota. J Agric Food Chem  https://doi.org/10.1021/acs.jafc.6b02716, in press
  20. Hatta E, Matsumoto K, Honda Y (2015) Bacillolysin, papain, and subtilisin improve the quality of gluten-free rice bread. J Cereal Sci 61:41–47CrossRefGoogle Scholar
  21. Iglesias MS, Sequeiros C, García S, Olivera NL (2017) Newly isolated Bacillus sp. G51 from Patagonian wool produces an enzyme combination suitable for felt-resist treatments of organic wool. Bioprocess Biosyst Eng 40:833–842CrossRefPubMedGoogle Scholar
  22. Kasana RC, Pandey CB (2017) Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol in press 38:141–156.  https://doi.org/10.1080/07388551.2017.1312273 CrossRefPubMedGoogle Scholar
  23. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828PubMedGoogle Scholar
  24. Kreij A, Venema G, van den Burg B (2000) Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. J Biol Chem 275:31115–31120CrossRefPubMedGoogle Scholar
  25. Lu Y, McMahon DJ, Vollmer AH (2017) Investigating rennet coagulation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making. J Dairy Sci 100:892–900CrossRefPubMedGoogle Scholar
  26. Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61CrossRefGoogle Scholar
  27. Michalski A, Damoc E, Lange O, Denisov E, Nolting D, Müller M, Viner R, Schwartz J, Remes P, Belford M, Dunyach JJ, Cox J, Horning S, Mann M, Makarov A (2012) Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol Cell Proteomics 11:O111.013698CrossRefPubMedGoogle Scholar
  28. Pangallo D, Chovanová K, Drahovska H, De Leo F, Urzì C (2009) Application of fluorescence internal transcribed spacer-PCR (f-ITS) for the cluster analysis of bacteria isolated from air and deteriorated fresco surfaces. Int Biodeterior Biodegrad 63:868–872CrossRefGoogle Scholar
  29. Pangallo D, Kraková L, Chovanová K, Šimonovičová A, De Leo F, Urzì C (2012) Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 28:2015–2027CrossRefPubMedGoogle Scholar
  30. Pangallo D, Bučková M, Kraková L, Puškárová A, Šaková N, Grivalský T, Chovanová K, Zemánková M (2015) Biodeterioration of epoxy resin: a microbial survey through culture-independent and culture-dependent approaches. Environ Microbiol 17:462–479CrossRefPubMedGoogle Scholar
  31. Park GS, Hong SJ, Jung BK, Khan AR, Park YJ, Park CE, Lee A, Kwak Y, Lee YJ, Lee DW, Lee C, Park CK, Shin JH (2015) Complete genome sequence of a keratin-degrading bacterium Chryseobacterium gallinarum strain DSM 27622(T) isolated from chicken. J Biotechnol 211:66–67CrossRefPubMedGoogle Scholar
  32. Rajaei S, Heidari R, Shahbani Zahiri H, Sharifzadeh S, Torktaz I, Akbari Noghabi K (2014) A novel cold-adapted pullulanase from Exiguobacterium sp. SH3: production optimization, purification, and characterization. Starke 66:225–234CrossRefGoogle Scholar
  33. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83CrossRefPubMedGoogle Scholar
  34. Ruf A, Stihle M, Benz J, Schmidt M, Sobek H (2013) Structure of gentlyase, the neutral metalloprotease of Paenibacillus polymyxa. Acta Crystallogr D 69:24–31CrossRefPubMedGoogle Scholar
  35. Sarmiento A, Pérez-Alonso M, Olivares M, Castro K, Martínez-Arkarazo I, Fernández LA, Madariaga JM (2011) Classification and identification of organic binding media in artworks by means of Fourier-transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem 399:3601–3611CrossRefPubMedGoogle Scholar
  36. Schellmann NC (2007) Animal glues: a review of their key properties relevant to conservation. Stud Conserv 52:55–66CrossRefGoogle Scholar
  37. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  38. Selim S, Hassan S, Hagagy N, Kraková L, Grivalský T, Pangallo D (2017) Assessment of microbial diversity in Saudi springs by culture-dependent and culture-independent methods. Geomicrobiol J 34:443–453Google Scholar
  39. Sivakumar N, Raveendran S (2015) Keratin degradation by bacteria and fungi isolated from a poultry farm and plumage. Br Poult Sci 56:210–217CrossRefPubMedGoogle Scholar
  40. Stark W, Pauptit RA, Wilson KS, Jansonius JN (1992) The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Eur J Biochem 207:781–791CrossRefPubMedGoogle Scholar
  41. Vijayalaxmi S, Appaiah KA, Jayalakshmi SK, Mulimani VH, Sreeramulu K (2013) Production of bioethanol from fermented sugars of sugarcane bagasse produced by lignocellulolytic enzymes of Exiguobacterium sp. VSG-1. Appl Biochem Biotechnol 171:246–260CrossRefPubMedGoogle Scholar
  42. Vishnivetskaya TA, Kathariou S, Tiedje JM (2009) The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13:541–555CrossRefPubMedGoogle Scholar
  43. Wang B (2016) Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRefGoogle Scholar
  44. Ward GWR (2008) Materials and techniques in art. Oxford University Press, Editor: Ward GWRGoogle Scholar
  45. Wei S, Schreiner M, Rosenberg E, Guo H, Ma Q (2011) Identification of the binding media in Tang Dynasty Chinese wall paintings by using Py-GC/MS and GC/MS techniques. Int J Conserv Sci 2:77–88Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lenka Jeszeová
    • 1
  • Vladena Bauerová-Hlinková
    • 1
  • Peter Baráth
    • 2
  • Andrea Puškárová
    • 1
  • Mária Bučková
    • 1
  • Lucia Kraková
    • 1
  • Domenico Pangallo
    • 1
  1. 1.Institute of Molecular BiologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institute of ChemistrySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations