Advertisement

Applied Microbiology and Biotechnology

, Volume 102, Issue 15, pp 6279–6298 | Cite as

Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions

  • Lu Yan
  • Haobin Zhao
  • Xixi Zhao
  • Xiaoguang Xu
  • Yichao Di
  • Chunmei Jiang
  • Junling Shi
  • Dongyan Shao
  • Qingsheng Huang
  • Hui Yang
  • Mingliang Jin
Mini-Review

Abstract

Endophytes are microorganisms that colonize the interior of host plants without causing apparent disease. They have been widely studied for their ability to modulate relationships between plants and biotic/abiotic stresses, often producing valuable secondary metabolites that can affect host physiology. Owing to the advantages of microbial fermentation over plant/cell cultivation and chemical synthesis, endophytic fungi have received significant attention as a mean for secondary metabolite production. This article summarizes currently reported results on plant-endophyte interaction hypotheses and highlights the biotechnological applications of endophytic fungi and their metabolites in agriculture, environment, biomedicine, energy, and biocatalysts. Current bottlenecks in industrial development and commercial applications as well as possible solutions are also discussed.

Keywords

Endophyte Mutualism Interaction benefit Adversity tolerance Nutrient acquisition Biocontrol Bioproduct 

Notes

Funding

This study was funded by the National Natural Science Foundation of China (grant no. 31471718, 1701722), the Modern Agricultural Industry Technology System (CARS-30), the National Key Technology R&D Program (2015BAD16B02), Key Research and Development Plan of Shaanxi Province (2017ZDXL-NY-0304), the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201840), and the Key Projects of Graduate Creative Innovation Seed Funding of the Northwestern University of Technology (Z2017059).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors

References

  1. Aarthi V, Smita S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188(z2):251–257.  https://doi.org/10.1016/j.biortech.2014.12.106 Google Scholar
  2. Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722.  https://doi.org/10.1016/j.biortech.2011.07.073 PubMedGoogle Scholar
  3. Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90(6):1829–1845.  https://doi.org/10.1007/s00253-011-3270-y PubMedGoogle Scholar
  4. Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654.  https://doi.org/10.1073/pnas.2533483100 PubMedPubMedCentralGoogle Scholar
  5. Arnold AE, Lewis LC, Vega FE, Blackwell M (2005) Ecology and evolution of fungal endophytes and their roles against insects. In: Vega FE, Blackwell M (eds) Insect-Fungal Associations, Ecology and Evolution. Oxford Press, New York, pp 74–96Google Scholar
  6. Ayob FW, Simarani K, Zainal AN, Mohamad J (2017) First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microb Biotechnol 10(4):926–932.  https://doi.org/10.1111/1751-7915.12603 PubMedPubMedCentralGoogle Scholar
  7. Balakumaran MD, Ramachandran R, Kalaichelvan PT (2015) Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol Res 178:9–17.  https://doi.org/10.1016/j.micres.2015.05.009 PubMedGoogle Scholar
  8. Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510.  https://doi.org/10.1111/j.1469-8137.2008.02583.x PubMedGoogle Scholar
  9. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24(1):23–58.  https://doi.org/10.1080/07352680590910410 Google Scholar
  10. Behie SW, Bidochka MJ (2014a) Nutrient transfer in plant-fungal symbioses. Trends Plant Sci 19(11):734–740.  https://doi.org/10.1016/j.tplants.2014.06.007 PubMedGoogle Scholar
  11. Behie SW, Bidochka MJ (2014b) Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80(5):1553–1560.  https://doi.org/10.1128/aem.03338-13 PubMedPubMedCentralGoogle Scholar
  12. Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577.  https://doi.org/10.1126/science.1222289 PubMedGoogle Scholar
  13. Bertrand S, Bohni N, Schnee S, Schumpp O, Gindro K, Wolfender JL (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32(6):1180–1204.  https://doi.org/10.1016/j.biotechadv.2014.03.001 PubMedGoogle Scholar
  14. Bhalkar BN, Bedekar PA, Kshirsagar SD, Govindwar SP (2016a) Solid state fermentation of soybean waste and an up-flow column bioreactor for continuous production of camptothecine by an endophytic fungus Fusarium oxysporum. RSC Adv 6(61):56527–56536.  https://doi.org/10.1039/c6ra08956a Google Scholar
  15. Bhalkar BN, Patil SM, Govindwar SP (2016b) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120(6–7):873–883.  https://doi.org/10.1016/j.funbio.2016.04.003 PubMedGoogle Scholar
  16. Bian G, Yuan Y, Tao H, Shi X, Zhong X, Han Y, Fu S, Fang C, Deng Z, Liu T (2017) Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6. Biotechnol J 12(4):1600697.  https://doi.org/10.1002/biot.201600697 Google Scholar
  17. Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111.  https://doi.org/10.1105/tpc.7.7.1099 PubMedPubMedCentralGoogle Scholar
  18. Budhiraja A, Nepali K, Sapra S, Gupta S, Kumar S, Dhar KL (2013) Bioactive metabolites from an endophytic fungus of Aspergillus species isolated from seeds of Gloriosa superba Linn. Med Chem Res 22(1):323–329.  https://doi.org/10.1007/s00044-012-0032-z Google Scholar
  19. Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9.  https://doi.org/10.2307/1943154 Google Scholar
  20. Carroll GC (1991) Beyond pest deterrence—alternative strategies and hidden costs of endophytic mutualisms in vascular plants. In: Brock/Springer Series in Contemporary Bioscienceon. Springer-Verlag, New York, pp 358–375.  https://doi.org/10.1007/978-1-4612-3168-4_18 Google Scholar
  21. Chandrappa CP, Govindappa M, Chandrasekar N, Sarkar S, Ooha S, Channabasava R (2016) Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum. Adv Nat Sci Nanosci Nanotechnol 7(2):025016.  https://doi.org/10.1088/2043-6262/7/2/025016 Google Scholar
  22. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12.  https://doi.org/10.1016/j.toxlet.2007.10.004 PubMedGoogle Scholar
  23. Chen XM, Sang XX, Li SH, Zhang SJ, Bai LH (2010) Studies on a chlorogenic acid-producing endophytic fungi isolated from Eucommia ulmoides Oliver. J Ind Microbiol Biotechnol 37(5):447–454.  https://doi.org/10.1007/s10295-010-0690-0 PubMedGoogle Scholar
  24. Chen Y, Mao W, Tao H, Zhu W, Qi X, Chen Y, Li H, Zhao C, Yang Y, Hou Y (2011) Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp. Y16. Bioresour Technol 102(17):8179–8184.  https://doi.org/10.1016/j.biortech.2011.06.048 PubMedGoogle Scholar
  25. Chen F, Tan N, Long W, Yang SK, She ZG, Lin YC (2014) Enhancement of uranium(VI) biosorption by chemically modified marine-derived mangrove endophytic fungus Fusarium sp. #ZZF51. J Radioanal Nucl Chem 299(1):193–201.  https://doi.org/10.1007/s10967-013-2758-6 Google Scholar
  26. Cheplick GP (2004) Recovery from drought stress in Lolium perenne (Poaceae): are fungal endophytes detrimental? Am J Bot 91(12):1960–1968.  https://doi.org/10.3732/ajb.91.12.1960 PubMedGoogle Scholar
  27. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106.  https://doi.org/10.1016/j.chemosphere.2016.10.097 PubMedGoogle Scholar
  28. Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res Int 21(3):2346–2357.  https://doi.org/10.1007/s11356-013-2163-2 PubMedGoogle Scholar
  29. Devi LS, Joshi SR (2014) Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4. J Microbiol 52(8):667–674.  https://doi.org/10.1007/s12275-014-4113-1 PubMedGoogle Scholar
  30. Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3(1):29–37.  https://doi.org/10.1016/j.jmau.2014.10.004 Google Scholar
  31. Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180(2):190–195.  https://doi.org/10.1016/j.plantsci.2010.10.002 PubMedGoogle Scholar
  32. Egamberdieva D, Davranov K, Wirth S, Hashem A, Abd EA (2017) Impact of soil salinity on the plant-growth—promoting and biological control abilities of root associated bacteria. Saudi J Biol Sci 24(7):1601–1608.  https://doi.org/10.1016/j.sjbs.2017.07.004 PubMedPubMedCentralGoogle Scholar
  33. Elgendy MMAA, Alzahrani HAA, Elbondkly AMA (2016) Genome shuffling of Mangrove endophytic Aspergillus luchuensis MERV10 for improving the cholesterol-lowering agent lovastatin under solid state fermentation. Mycobiology 44(3):171–179.  https://doi.org/10.5941/myco.2016.44.3.171 Google Scholar
  34. Elmoslamy SH, Elkady MF, Rezk AH, Abdelfattah YR (2017) Applying taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 7:45297.  https://doi.org/10.1038/srep45297 Google Scholar
  35. Erik L, Arjan VZ, Rene G (2015) Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu Rev Phytopathol 53(1):311–334.  https://doi.org/10.1146/annurev-phyto-080614-120149 Google Scholar
  36. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69(8):1121–1124.  https://doi.org/10.1021/np060174f PubMedGoogle Scholar
  37. Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, Vasconcelos MH, Sokovic M (2015) Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry 114:38–55.  https://doi.org/10.1016/j.phytochem.2014.10.011 PubMedGoogle Scholar
  38. Field KJ, Pressel S, Duckett JG, Rimington WR, Bidartondo MI (2015) Symbiotic options for the conquest of land. Trends Ecol Evol 30(8):477–486.  https://doi.org/10.1016/j.tree.2015.05.007 PubMedGoogle Scholar
  39. Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol Lett 329(1):1–8.  https://doi.org/10.1111/j.1574-6968.2011.02465.x PubMedGoogle Scholar
  40. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398.  https://doi.org/10.1016/j.tibtech.2011.03.008 PubMedGoogle Scholar
  41. Golinska P, Rathod D, Wypij M, Gupta I, Składanowski M, Paralikar P, Dahm H, Rai M (2016) Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit Rev Biotechnol 2016:1–14.  https://doi.org/10.1080/07388551.2016.1235011 Google Scholar
  42. González-Rodríguez ML, Mouram I, Ma CB, Villasmil S, Rabasco AM (2012) Applying the taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery. J Pharm Sci 101(10):3845–3363.  https://doi.org/10.1002/jps.23252 PubMedGoogle Scholar
  43. Gracidarodríguez J, Gómezvaladez A, Tovarjiménez X, Amaroreyes A, Aranacuenca A, Zamudiopérez E (2017) Optimization of the biosynthesis of naphthoquinones by endophytic fungi isolated of Ferocactus latispinus. Biologia 72(12):1416–1421.  https://doi.org/10.1515/biolog-2017-0177 Google Scholar
  44. Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(12):3814–3829.  https://doi.org/10.1099/mic.0.041327-0 PubMedGoogle Scholar
  45. Guo S, Mao W, Yan M, Zhao C, Li N, Shan J, Lin C, Liu X, Guo T, Guo T (2014) Galactomannan with novel structure produced by the coral endophytic fungus Aspergillus ochraceus. Carbohydr Polym 105(5):325–333.  https://doi.org/10.1016/j.carbpol.2014.01.079 PubMedGoogle Scholar
  46. Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320.  https://doi.org/10.1128/mmbr.00050-14 PubMedPubMedCentralGoogle Scholar
  47. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52(10):1237–1243.  https://doi.org/10.3109/13880209.2014.885061 PubMedGoogle Scholar
  48. Hui L, Wei C, Man W, Wu R, Yong Z, Gao Y, Ren A (2017) Arbuscular mycorrhizal fungus inoculation reduces the drought-resistance advantage of endophyte-infected versus endophyte-free Leymus chinensis. Mycorrhiza 27(8):791–799.  https://doi.org/10.1007/s00572-017-0794-8 Google Scholar
  49. Jaber LR, Enkerli J (2017) Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Sci Tech 27(1):28–41.  https://doi.org/10.1080/09583157.2016.1243227 Google Scholar
  50. Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z (2016) Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials 85:152–167.  https://doi.org/10.1016/j.biomaterials.2016.01.061 PubMedGoogle Scholar
  51. Kaushik NK, Murali TS, Sahal D, Suryanarayanan TS (2014) A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol 59(4):745–757.  https://doi.org/10.2478/s11686-014-0307-2 PubMedGoogle Scholar
  52. Kei H, Nina G, Soledad S, Thomas NR, Stéphane H, Barbara K, Ulla N, Diana R, Marcel B, O’Connell RJ (2016) Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165(2):464–474.  https://doi.org/10.1016/j.cell.2016.02.028 Google Scholar
  53. Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12(1):3.  https://doi.org/10.1186/1471-2180-12-3 PubMedPubMedCentralGoogle Scholar
  54. Khan AR, Ullah I, Waqas M, Shahzad R, Hong SJ, Park GS, Jung BK, Lee IJ, Shin JH (2015a) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31(9):1–6.  https://doi.org/10.1007/s11274-015-1888-0 Google Scholar
  55. Khan MS, Zhang X, You L, Fu X, Abbasi AM (2015b) Structure and bioactivities of fungal polysaccharides. In: Ramawat K, Mérillon JM (eds) Polysaccharides. Springer, Cham, pp 1851–1861Google Scholar
  56. Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ, Ullah R, Jung BK, Park CE, Ur-Rehman S (2017) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136(2017):180–188.  https://doi.org/10.1016/j.ecoenv.2016.03.014 PubMedGoogle Scholar
  57. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(6044):880–882.  https://doi.org/10.1126/science.1208473 PubMedGoogle Scholar
  58. Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74(4):764–775.  https://doi.org/10.1021/np1008398 PubMedGoogle Scholar
  59. Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19(7):792–798.  https://doi.org/10.1016/j.chembiol.2012.06.004 PubMedGoogle Scholar
  60. Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28(3):1287–1294.  https://doi.org/10.1007/s11274-011-0876-2 PubMedGoogle Scholar
  61. Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of taxol (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32(6):304–311.  https://doi.org/10.1016/j.tibtech.2014.03.011 PubMedGoogle Scholar
  62. Li P (2012) In vitro evaluation of antioxidant activities of polysaccharides from the endophytic fungus Berkleasmium sp. Dzf12. Afr J Microbiol Res 6(2):471–477.  https://doi.org/10.5897/ajmr11.1510 Google Scholar
  63. Li XJ, Zhang HY (2008) Synergy in natural medicines: implications for drug discovery. Trends Pharmacol Sci 29(7):331–332.  https://doi.org/10.1016/j.tips.2008.04.002 PubMedGoogle Scholar
  64. Li P, Mou Y, Shan T, Xu J, Li Y, Lu S, Zhou L (2011) Effects of polysaccharide elicitors from endophytic Fusarium oxysporium Dzf17 on growth and diosgenin production in cell suspension culture of Dioscorea zingiberensis. Molecules 16(11):9003–9016.  https://doi.org/10.3390/molecules16119003 PubMedGoogle Scholar
  65. Li HY, Shen M, Zhou ZP, Li T, Wei YL, Lin LB (2012a) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Divers 54(1):79–86.  https://doi.org/10.1007/s13225-012-0153-1 Google Scholar
  66. Li P, Lu S, Shan T, Mou Y, Li Y, Sun W, Zhou L (2012b) Extraction optimization of water-extracted mycelial polysaccharide from endophytic fungus Fusarium oxysporum Dzf17 by response surface methodology. Int J Mol Sci 13(5):5441–5453.  https://doi.org/10.3390/ijms13055441 PubMedPubMedCentralGoogle Scholar
  67. Li P, Xu L, Mou Y, Shan T, Mao Z, Lu S, Peng Y, Zhou L (2012c) Medium optimization for exopolysaccharide production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Int J Mol Sci 13(9):11411–11426.  https://doi.org/10.3390/ijms130911411 PubMedPubMedCentralGoogle Scholar
  68. Liu X, Dou G, Ma Y (2016) Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J Gen Plant Pathol 82(3):165–173.  https://doi.org/10.1007/s10327-016-0648-9 Google Scholar
  69. Liu J, Wang X, Pu H, Liu S, Kan J, Jin C (2017) Recent advances in endophytic exopolysaccharides: production, structural characterization, physiological role and biological activity. Carbohydr Polym 157:1113–1124.  https://doi.org/10.1016/j.carbpol.2016.10.084 PubMedGoogle Scholar
  70. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258.  https://doi.org/10.1016/j.biotechadv.2010.12.001 PubMedGoogle Scholar
  71. Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90(1):683–689.  https://doi.org/10.1016/j.carbpol.2012.05.097 PubMedGoogle Scholar
  72. Mahapatra S, Banerjee D (2013a) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53(2):62–66.  https://doi.org/10.1016/j.ijbiomac.2012.11.003 PubMedGoogle Scholar
  73. Mahapatra S, Banerjee D (2013b) Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 97(2):627–634.  https://doi.org/10.1016/j.carbpol.2013.05.039 PubMedGoogle Scholar
  74. Mahapatra S, Banerjee D (2016) Production and structural elucidation of exopolysaccharide from endophytic Pestalotiopsis sp. BC55. Int J Biol Macromol 82:182–191.  https://doi.org/10.1016/j.ijbiomac.2015.11.035 PubMedGoogle Scholar
  75. Manjunath HM, Joshi CG, Danagoudar A, Poyya J, Kudva AK, Dhananjaya BL (2017) Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem 63(2017):137–144.  https://doi.org/10.1016/j.procbio.2017.09.008 Google Scholar
  76. Monggoot S, Popluechai S, Gentekaki E, Pripdeevech P (2017) Fungal endophytes: an alternative source for production of volatile compounds from agarwood oil of Aquilaria subintegra. Microb Ecol 74(1):54–61.  https://doi.org/10.1007/s00248-016-0908-4 PubMedGoogle Scholar
  77. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA (2007) Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7(6):701–724.  https://doi.org/10.1016/j.intimp.2007.01.008 PubMedGoogle Scholar
  78. Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012.  https://doi.org/10.3389/fmicb.2015.01012 PubMedPubMedCentralGoogle Scholar
  79. Mousa WK, Schwan A, Davidson J, Strange P, Liu H, Zhou T, Auzanneau FI, Raizada MN (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front Microbiol 6:1157.  https://doi.org/10.3389/fmicb.2015.01157 PubMedPubMedCentralGoogle Scholar
  80. Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C, D’Ambrosio M, Di TL, Pertot I (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology 96(7):689–698.  https://doi.org/10.1094/phyto-96-0689 PubMedGoogle Scholar
  81. Nagarajan A, Thirunavuk N, Suryanaray TS, Gummadi SN (2014) Screening and isolation of novel glutaminase free L-asparaginase from fungal endophytes. Res J Microbiol 9(4):163–176.  https://doi.org/10.3923/jm.2014.163.176 Google Scholar
  82. Namdari M, Eatemadi A, Soleimaninejad M, Hammed AT (2017) A brief review on the application of nanoparticle enclosed herbal medicine for the treatment of infective endocarditis. Biomed Pharmacother 87:321–331.  https://doi.org/10.1016/j.biopha.2016.12.099 PubMedGoogle Scholar
  83. Netala V, Bethu M, Pushpalatha B, Baki V, Aishwarya S, Rao JV, Tartte V (2016) Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int J Nanomedicine 11:5683–5696.  https://doi.org/10.2147/ijn.s112857 PubMedPubMedCentralGoogle Scholar
  84. Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198(1):249–266.  https://doi.org/10.1111/j.0105-2896.2004.0119.x PubMedGoogle Scholar
  85. Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from Gongronella butleri. Materials 2(2):374–398.  https://doi.org/10.3390/ma2020374 PubMedCentralGoogle Scholar
  86. Orlandelli RC, Silva da Silva ML, Vasconcelos AFD, Almeida IVD, Vicentini VEP, Prieto A, Hernandez MDD, Azevedo JLD, Pamphile JA (2017) β-(1→3,1→6)-D-glucans produced by Diaporthe sp. endophytes: purification, chemical characterization and antiproliferative activity against MCF-7 and HepG2-C3A cells. Int J Biol Macromol 94(Pt A):431–437.  https://doi.org/10.1016/j.ijbiomac.2016.10.048 PubMedGoogle Scholar
  87. Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98(3):267–270.  https://doi.org/10.1016/j.jip.2008.01.010 PubMedGoogle Scholar
  88. Palem PPC, Kuriakose GC, Jayabaskaran C (2015) Correction: an endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. Plos One 10(12):e0144476.  https://doi.org/10.1371/journal.pone.0153111 PubMedPubMedCentralGoogle Scholar
  89. Pan F, Su TJ, Cai SM, Wu W (2017) Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci Rep 7:42008.  https://doi.org/10.1038/srep42008 PubMedPubMedCentralGoogle Scholar
  90. Parsa S, Ortiz V, Vega FE (2013) Establishing fungal entomopathogens as endophytes: towards endophytic biological control. J Vis Exp 74:e50360.  https://doi.org/10.3791/50360 Google Scholar
  91. Parthasarathy R, Sathiyabama M (2014) Gymnemagenin-producing endophytic fungus isolated from a medicinal plant Gymnema sylvestre R.Br. Appl Biochem Biotechnol 172(6):3141–3152.  https://doi.org/10.1007/s12010-014-0754-0 PubMedGoogle Scholar
  92. Priyadharsini P, Muthukumar T (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77.  https://doi.org/10.1016/j.funeco.2017.02.007 Google Scholar
  93. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97(21):9365–9375.  https://doi.org/10.1007/s00253-013-5163-8 PubMedGoogle Scholar
  94. Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619.  https://doi.org/10.1007/s00449-013-0937-z PubMedGoogle Scholar
  95. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178.  https://doi.org/10.5101/nbe.v3i3.p174-178 Google Scholar
  96. Rajulu MBG, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, Gueddari NEE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Divers 47(1):43–53.  https://doi.org/10.1007/s13225-010-0071-z Google Scholar
  97. Reddy NV, Subbaiah KV, Pushpalatha B, Aparna GS, Vijaya T (2016) Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6(2):132.  https://doi.org/10.1007/s13205-016-0433-7 Google Scholar
  98. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289(5486):1920–1921.  https://doi.org/10.1126/science.289.5486.1920 PubMedGoogle Scholar
  99. Redman RS, Kim YO, Woodward CJ, Greer C, Espino L, Doty SL, Rodriguez RJ (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. Plos One 6(7):e14823.  https://doi.org/10.1371/journal.pone.0014823 PubMedPubMedCentralGoogle Scholar
  100. Rodriguez RJ, Henson J, Van VE, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2(4):404–416.  https://doi.org/10.1038/ismej.2007.106 PubMedGoogle Scholar
  101. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–326.  https://doi.org/10.1111/j.1469-8137.2009.02773.x PubMedGoogle Scholar
  102. Sah B, Subban K, Chelliah J (2017) Cloning and sequence analysis of 10-deacetylbaccatin III-10-O-acetyl transferase gene and WRKY1 transcription factor from taxol producing endophytic fungus Lasiodiplodia theobromea. FEMS Microbiol Lett 364(24):fnx253.  https://doi.org/10.1093/femsle/fnx253 Google Scholar
  103. Santosfo F, Fill TP, Nakamura J, Monteiro MR, Rodriguesfo E (2011) Endophytic fungi as a source of biofuel precursors. J Microbiol Biotechnol 21(7):728–733.  https://doi.org/10.4014/jmb.1010.10052 Google Scholar
  104. Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283.  https://doi.org/10.1017/s0953756299008540 Google Scholar
  105. Schulz B, Haas S, Junker C, Andrée N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci 109(1):39–45Google Scholar
  106. Selosse MA, Tacon FL (1998) The land flora: a phototroph-fungus partnership? Trends Ecol Evol 13(1):15–20.  https://doi.org/10.1016/s0169-5347(97)01230-5 PubMedGoogle Scholar
  107. Shaw JJ, Spakowicz DJ, Dalal RS, Davis JH, Lehr NA, Dunican BF, Orellana EA, Narváez-Trujillo A, Strobel SA (2015) Biosynthesis and genomic analysis of medium-chain hydrocarbon production by the endophytic fungal isolate Nigrograna mackinnonii E5202H. Appl Microbiol Biotechnol 99(8):3715–3728.  https://doi.org/10.1007/s00253-014-6206-5 PubMedPubMedCentralGoogle Scholar
  108. Shi JL, Liu C, Liu L, Yang B, Zhang Y (2012) Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl Microbiol Biotechnol 93(4):1475–1483.  https://doi.org/10.1007/s00253-011-3613-8 PubMedGoogle Scholar
  109. Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z (2017) Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24(1):417–426.  https://doi.org/10.1007/s11356-016-7693-y Google Scholar
  110. Shweta S, Gurumurthy BR, Ravikanth G, Ramanan US, Shivanna MB (2013) Endophytic fungi from Miquelia dentata Bedd., produce the anti-cancer alkaloid, camptothecine. Phytomedicine 20(3-4):337–342.  https://doi.org/10.1016/j.phymed.2012.11.015 PubMedGoogle Scholar
  111. Siddaiah CN, Satyanarayana NR, Mudili V, Gupta VK, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991.  https://doi.org/10.1038/srep43991 PubMedPubMedCentralGoogle Scholar
  112. Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P (2013) Biosynthesis of silver nanoparticle by endophytic fungi Pencillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res 7(5):448–453.  https://doi.org/10.1016/j.jopr.2013.06.003 Google Scholar
  113. Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh AK, Mathew J (2014) Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl 2014(5251):408021.  https://doi.org/10.1155/2014/408021 PubMedPubMedCentralGoogle Scholar
  114. Singh JS, Abhilash PC, Gupta VK (2016) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34(10):773–775.  https://doi.org/10.1016/j.tibtech.2016.06.002 Google Scholar
  115. Singh T, Jyoti K, Patnaik A, Singh A, Chauhan R, Chandel SS (2017) Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J Genet Eng Biotechnol 15(1):31–39.  https://doi.org/10.1016/j.jgeb.2017.04.005 Google Scholar
  116. Soliman SSM, Raizada MN (2013) Interactions between co-habitating fungi elicit synthesis of taxol from an endophytic fungus in host Taxus Plants. Front Microbiol 4(1):3.  https://doi.org/10.3389/fmicb.2013.00003 PubMedPubMedCentralGoogle Scholar
  117. Soliman SSM, Raizada MN (2018) Darkness: a crucial factor in fungal taxol production. Front Microbiol 09:353.  https://doi.org/10.3389/fmicb.2018.00353 Google Scholar
  118. Soliman SSM, Greenwood JS, Bombarely A, Mueller LA, Tsao R, Mosser DD, Raizada MN (2015) An endophyte constructs fungicide-containing extracellular barriers forits host plant. Curr Biol 25(19):2570–2576.  https://doi.org/10.1016/j.cub.2015.08.027 PubMedGoogle Scholar
  119. Soliman SSM, Mosa KA, El-Keblawy AA, Husseiny MI (2017) Exogenous and endogenous increase in fungal GGPP increased fungal taxol production. Appl Microbiol Biotechnol 101(20):1–11.  https://doi.org/10.1007/s00253-017-8509-9 Google Scholar
  120. Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi? Trends Plant Sci 14(7):353–355.  https://doi.org/10.1016/j.tplants.2009.05.001 PubMedGoogle Scholar
  121. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K (2000) Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5’-methoxyhydnocarpin, a multidrug pump inhibitor. Proc Natl Acad Sci U S A 97(4):1433–1437.  https://doi.org/10.1073/pnas.030540597 PubMedPubMedCentralGoogle Scholar
  122. Strobel G, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328.  https://doi.org/10.1099/mic.0.30824-0 PubMedGoogle Scholar
  123. Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017.  https://doi.org/10.1016/j.jplph.2010.02.013 PubMedGoogle Scholar
  124. Surono, Narisawa K (2017) The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds andapromoter of Asparagus officinalis growth. Fungal Ecol 28:1–10.  https://doi.org/10.1016/j.funeco.2017.04.001 Google Scholar
  125. Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54(1):19–30.  https://doi.org/10.1007/s13225-012-0168-7 Google Scholar
  126. Terhonen E, Sipari N, Asiegbu FO (2016) Inhibition of phytopathogens by fungal root endophytes of Norway spruce. Biol Control 99:53–63.  https://doi.org/10.1016/j.biocontrol.2016.04.006 Google Scholar
  127. Thirunavukkarasu N, Jahnes B, Broadstock A, Rajulu MBG, Murali TS, Gopalan V, Suryanarayanan TS (2015) Screening marine-derived endophytic fungi for xylan-degrading enzymes. Curr Sci 109(1):112–120Google Scholar
  128. Uddandarao P, Balakrishnan RM (2017) Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: a colorimetric probe in metal detection. Spectrochim Acta A 175:200–207.  https://doi.org/10.1016/j.saa.2016.12.021 Google Scholar
  129. Vasanthakumari MM, Jadhav SS, Sachin N, Vinod G, Shweta S, Manjunatha BL, Kumara PM, Ravikanth G, Nataraja KN, Shaanker RU (2015) Restoration of camptothecine production in attenuated endophytic fungus on re-inoculation into host plant and treatment with DNA methyltransferase inhibitor. World J Microbiol Biotechnol 31(10):1629–1639.  https://doi.org/10.1007/s11274-015-1916-0 PubMedGoogle Scholar
  130. Venugopalan A, Srivastava S (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 33(6:873–887.  https://doi.org/10.1016/j.biotechadv.2015.07.004 Google Scholar
  131. Venugopalan A, Potunuru UR, Dixit M, Srivastava S (2016) Reprint of: effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 213(5):104–111.  https://doi.org/10.1016/j.biortech.2016.05.023 Google Scholar
  132. Wang XJ, Min CL, Ge M, Zuo RH (2014) An endophytic sanguinarine-producing fungus from Macleaya cordata, Fusarium proliferatum BLH51. Curr Microbiol 68(3):336–341.  https://doi.org/10.1007/s00284-013-0482-7 PubMedGoogle Scholar
  133. Wang M, Zhang W, Xu W, Shen Y, Du L (2016) Optimization of genome shuffling for high-yield production of the antitumor deacetylmycoepoxydiene in an endophytic fungus of mangrove plants. Appl Microbiol Biotechnol 100(17):1–8.  https://doi.org/10.1007/s00253-016-7457-0 Google Scholar
  134. Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegradation of diuron by an endophytic fungus Neurospora intermedia DP8-1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. Plos One 12(8):e0182556.  https://doi.org/10.1371/journal.pone.0182556 PubMedPubMedCentralGoogle Scholar
  135. Wani ZA, Mirza DN, Arora P, Riyaz-Ul-Hassan S (2016) Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: an insight into the microbiome of Crocus sativus Linn. Fungal Biol 120(12):1509–1524.  https://doi.org/10.1016/j.funbio.2016.07.011 PubMedGoogle Scholar
  136. Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, Kesseler L, Nostadt R, Hilbert M, Langen G, Zuccaro A (2016) The fungal-specific β-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat Commun 7:13188.  https://doi.org/10.1038/ncomms13188 PubMedPubMedCentralGoogle Scholar
  137. Wei Y (2012) Engineering taxol biosynthetic pathway for improving taxol yield in taxol-producing endophytic fungus EFY-21 (Ozonium sp.). Afr J Biotechnol 11(37):9094–9101.  https://doi.org/10.5897/ajb10.1896 Google Scholar
  138. Wu W, Tran W, Taatjes CA, Alonsogutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic Xylariaceae. Plos One 11(2):e0146983.  https://doi.org/10.1371/journal.pone.0146983 PubMedPubMedCentralGoogle Scholar
  139. Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, Labutti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K (2017) Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101(6):2603–2618.  https://doi.org/10.1007/s00253-017-8091-1 PubMedGoogle Scholar
  140. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, Guo H, Cao Z, Yang L, Chen J (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresour Technol 101(6):1668–1674.  https://doi.org/10.1016/j.biortech.2009.09.083 PubMedGoogle Scholar
  141. Xie XG, Fu WQ, Zhang FM, Shi XM, Zeng YT, Li H, Zhang W, Dai CC (2017) The endophytic fungus Phomopsis liquidambari increases nodulation and N2 fixation in Arachis hypogaea by enhancing hydrogen peroxide and nitric oxide signalling. Microb Ecol 74(2):427–440.  https://doi.org/10.1007/s00248-017-0944-8 PubMedGoogle Scholar
  142. Xiong ZQ, Yang YY, Na Z, Yong W (2013) Diversity of endophytic fungi and screening of fungal paclitaxel producer from Anglojap yew, Taxus x media. BMC Microbiol 13(1):71.  https://doi.org/10.1186/1471-2180-13-71 PubMedPubMedCentralGoogle Scholar
  143. Yan M, Mao W, Chen C, Kong X, Gu Q, Li N, Liu X, Wang B, Wang S, Xiao B (2014) Structural elucidation of the exopolysaccharide produced by the mangrove fungus Penicillium solitum. Carbohydr Polym 111(1):485–491.  https://doi.org/10.1016/j.carbpol.2014.05.013 PubMedGoogle Scholar
  144. Yan Z, Shi J, Gao Z, Yangwu R, Jiang H, Che J, Liu Y (2015) Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl Microbiol Biotechnol 99(11):4629–4643.  https://doi.org/10.1007/s00253-015-6491-7 Google Scholar
  145. Yang HB, Tan N, Wu FJ, Liu HJ, Sun M, She ZG, Lin YC (2012) Biosorption of uranium(VI) by a mangrove endophytic fungus Fusarium sp. #ZZF51 from the South China Sea. J Radioanal Nucl Chem 292(3):1011–1016.  https://doi.org/10.1007/s10967-011-1552-6 PubMedGoogle Scholar
  146. Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Xie F, Walker KD, Parks JW, Robert B (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15(1):69.  https://doi.org/10.1186/1471-2164-15-69 PubMedPubMedCentralGoogle Scholar
  147. Yao YR, Tian XL, Shen BM, Mao ZC, Chen GH, Xie BY (2015) Transformation of the endophytic fungus Acremonium implicatum with GFP and evaluation of its biocontrol effect against Meloidogyne incognita. World J Microbiol Biotechnol 31(4):549–556.  https://doi.org/10.1007/s11274-014-1781-2 PubMedGoogle Scholar
  148. Yeh CW, Zang CZ, Lin CC, Kan SC, Chang WF, Shieh CJ, Liu YC (2014) Quantitative and morphologic analysis on exopolysaccharide and biomass production from a truffle endophytic fungus Hypocreales sp. NCHU01. J Taiwan Inst Chem Eng 45(1):108–114.  https://doi.org/10.1016/j.jtice.2013.09.020 Google Scholar
  149. You X, Feng S, Luo S, Cong D, Yu Z, Yang Z, Zhang J (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85(1):161–168.  https://doi.org/10.1016/j.fitote.2012.12.010 PubMedGoogle Scholar
  150. Yu QY, Fang L, Yun MQ, Ji GW, Rong SH, Liang BL (2017) Endophytic fungi harbored in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. Microbiologyopen 6(3):e437.  https://doi.org/10.1002/mbo3.437 Google Scholar
  151. Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M, Hussain A (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicol Environ Safe 142:139–149.  https://doi.org/10.1016/j.ecoenv.2017.04.005 Google Scholar
  152. Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25(2):139–150.  https://doi.org/10.1094/mpmi-06-11-0179 PubMedGoogle Scholar
  153. Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293(2):155–159.  https://doi.org/10.1111/j.1574-6968.2009.01481.x PubMedGoogle Scholar
  154. Zhao K, Sun L, Ma X, Li X, Wang X, Ping W, Zhou D (2013a) Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. Afr J Biotechnol 10(20):4175–4182Google Scholar
  155. Zhao M, Hu B, Gu Z, Joo KI, Wang P, Tang Y (2013b) Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today 8(1):11–20.  https://doi.org/10.1016/j.nantod.2012.12.003 Google Scholar
  156. Zhou X, Wang Z, Jiang K, Wei Y, Lin J (2007) Screening of taxol-producing endophytic fungi from Taxus chinensis var. mairei. Appl Biochem Microbiol 43(4):439–443.  https://doi.org/10.1134/S000368380704014X Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lu Yan
    • 1
  • Haobin Zhao
    • 1
  • Xixi Zhao
    • 1
  • Xiaoguang Xu
    • 1
  • Yichao Di
    • 1
  • Chunmei Jiang
    • 1
  • Junling Shi
    • 1
  • Dongyan Shao
    • 1
  • Qingsheng Huang
    • 1
  • Hui Yang
    • 1
  • Mingliang Jin
    • 1
  1. 1.Key Laboratory for Space Bioscience and Biotechnology, School of Life SciencesNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations