Applied Microbiology and Biotechnology

, Volume 102, Issue 9, pp 3893–3900 | Cite as

Biocatalytic production of mandelic acid and analogues: a review and comparison with chemical processes

Mini-Review
  • 256 Downloads

Abstract

The aim of this study is to summarize the current progress in the design of biocatalytic processes applicable for the production of optically pure mandelic acids and their analogues. These compounds are used as building blocks for pharmaceutical chemistry and as chiral resolving agents. Their enzymatic syntheses mainly employed nitrile hydrolysis with nitrilases, ester hydrolysis, ammonolysis or esterification with lipases or esterases, and ketone reduction or alcohol oxidation with dehydrogenases. Each of these methods will be characterized in terms of its product concentrations, enantioselectivities, and the types of catalysts used. This review will focus on the dynamic kinetic resolution of mandelonitrile and analogues by nitrilases resulting in the production of high concentrations of (R)-mandelic acid or (R)-2-chloromandelic acid with excellent e.e. Currently, there is no comparable process for (S)-mandelic acids. However, the coupling of the S-selective cyanation of benzaldehyde with the enantioretentive hydrolysis of (S)-mandelonitrile thus obtained is a promising strategy. The major product can be changed from (S)-acid to (S)-amide using nitrilase mutants. The competitiveness of the biocatalytic and chemical processes will be assessed. This review covers the literature published within 2003–2017.

Keywords

Mandelic acid Nitrilase Lipase Esterase Dehydrogenase Enantioselectivity 

Notes

Acknowledgements

The financial support by the Czech Science Foundation (project 18-00184S) and Czech Ministry of Education (LTC17009) are gratefully acknowledged.

Compliance with ethical standards

Competing interests

The authors declare that they have no conflict of interest.

References

  1. Blacker AJ, Houson IN (2002) Preparation of mandelic acid derivatives. Patent WO2002066410A1 (29. 8. 2002)Google Scholar
  2. Cao Y, Wu SS, Li JH, Wu B, He BF (2014) Highly efficient resolution of mandelic acid using lipase from Pseudomonas stutzeri LC2-8 and a molecular modeling approach to rationalize its enantioselectivity. J Mol Catal B-Enzym 99:108–113.  https://doi.org/10.1016/j.molcatb.2013.10.026 CrossRefGoogle Scholar
  3. Chen S, Liu FY, Zhan K, Huang HS, Wang HN, Zhou JY, Zhang J, Gong YW, Zhang DL, Chen YP, Lin C, Wang B (2016) An efficient enzymatic aminolysis for kinetic resolution of aromatic α-hydroxyl acid in non-aqueous media. Tetrahedron Lett 57(48):5312–5314.  https://doi.org/10.1016/j.tetlet.2016.10.054 CrossRefGoogle Scholar
  4. Chmura A, Rustler S, Paravidino M, van Rantwijk F, Stolz A, Sheldon RA (2013) The combi-CLEA approach: enzymatic cascade synthesis of enantiomerically pure (S)-mandelic acid. Tetrahedron-Asymmetry 24(19):1225–1232.  https://doi.org/10.1016/j.tetasy.2013.08.013 CrossRefGoogle Scholar
  5. Gong JS, Li H, Lu ZM, Shi JS, Xu ZH (2012) Recent progress in the application of nitrilase in the biocatalytic synthesis of pharmaceutical intermediates. Prog Chem 27(4):448–458.  https://doi.org/10.7536/PC141113 Google Scholar
  6. Guo F, Ye LD, Li AP, Yan XH, Yang CC, Yu HW (2016) Insight into the role of halogen bond in the activity of D-mandelate dehydrogenase toward halogenated substrates. Tetrahedron Lett 57(18):1944–1948.  https://doi.org/10.1016/j.tetlet.2016.03.001 CrossRefGoogle Scholar
  7. He YC, Ma CL, Zhang X, Li L, Xu JH, Wu MX (2013) Highly enantioselective oxidation of racemic phenyl-1,2-ethanediol to optically pure (R)-(−)-mandelic acid by a newly isolated Brevibacterium lutescens CCZU12-1. Appl Microbiol Biotechnol 97(16):7185–7194.  https://doi.org/10.1007/s00253-013-4989-4 CrossRefPubMedGoogle Scholar
  8. Jiang XP, Lu TT, Liu CH, Ling XM, Zhuang MY, Zhang JX, Zhang YW (2016) Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. Int J Biol Macromol 88:9–17.  https://doi.org/10.1016/j.ijbiomac.2016.03.031 CrossRefPubMedGoogle Scholar
  9. Ju X, Yu HL, Pan J, Wei DZ, Xu JH (2010) Bioproduction of chiral mandelate by enantioselective deacylation of α-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011. Appl Microbiol Biotechnol 86(1):83–91.  https://doi.org/10.1007/s00253-009-2286-z CrossRefPubMedGoogle Scholar
  10. Kaplan O, Veselá AB, Petříčková A, Pasquarelli F, Pičmanová M, Rinágelová A, Bhalla TC, Pátek M, Martínková L (2013) A comparative study of nitrilases identified by genome mining. Mol Biotechnol 54(3):996–1003.  https://doi.org/10.1007/s12033-013-9656-6 CrossRefPubMedGoogle Scholar
  11. Kaul P, Banerjee A, Banerjee UC, Nitrile hydrolases in: Polaina J, Mac Cabe AP (Eds.): Industrial enzymes: structure, function and applications. Springer Dordrecht 2007, pp. 531–547Google Scholar
  12. Li GY, Huang KL, Jiang YR, Ding P (2007) Production of (R)-mandelic acid by immobilized cells of Saccharomyces cerevisiae on chitosan carrier. Process Biochem 42(10):1465–1469.  https://doi.org/10.1016/j.procbio.2007.06.015 CrossRefGoogle Scholar
  13. Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(–)-mandelic acid. J Agric Food Chem 62(20):4685–4694.  https://doi.org/10.1021/jf405683f CrossRefPubMedGoogle Scholar
  14. Ma BD, Yu HL, Pan J, Liu JY, Ju X, Xu JH (2013) A thermostable and organic-solvent tolerant esterase from Pseudomonas putida ECU1011: catalytic properties and performance in kinetic resolution of alpha-hydroxy acids. Bioresour Technol 133:354–360.  https://doi.org/10.1016/j.biortech.2013.01.089 CrossRefPubMedGoogle Scholar
  15. Martínková L, Křen V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14(2):130–137.  https://doi.org/10.1016/j.cbpa.2009.11.018 CrossRefPubMedGoogle Scholar
  16. Martínková L, Rucká L, Nešvera J, Pátek M (2017) Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J Microbiol Biotechnol 33(1):8.  https://doi.org/10.1007/s11274-016-2173-6 CrossRefPubMedGoogle Scholar
  17. Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D (2013) Efficient production of (R)-(–)-mandelic acid in biphasic system by immobilized recombinant E. coli. J Biotechnol 167(4):433–440.  https://doi.org/10.1016/j.jbiotec.2013.07.024 CrossRefPubMedGoogle Scholar
  18. Osprian I, Fechter MH, Griengl H (2003) Biocatalytic hydrolysis of cyanohydrins: an efficient approach to enantiopure α-hydroxy carboxylic acids. J Mol Catal B-Enzym 24-25:89–98.  https://doi.org/10.1016/S1381-1177(03)00113-9 CrossRefGoogle Scholar
  19. Petříčková A, Sosedov O, Baum S, Stolz A, Martínková L (2012) Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B-Enzym 77:74–80.  https://doi.org/10.1016/j.molcatb.2012.01.005 CrossRefGoogle Scholar
  20. Pham XH, Kim JM, Chang SM, Kim IH, Kim WS (2009) Enantioseparation of D/L-mandelic acid with L-phenylalanine in diastereomeric crystallization. J Mol Catal B-Enzym 60(1–2):87–92.  https://doi.org/10.1016/j.molcatb.2008.12.023 CrossRefGoogle Scholar
  21. Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70(4):2429–2436.  https://doi.org/10.1128/AEM.70.4.2429-2436.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Rucká L, Volkova O, Pavlík A, Kaplan O, Kracík M, Nešvera J, Martínková L, Pátek M (2014) Expression control of nitrile hydratase and amidase genes in Rhodococcus erythropolis and substrate specificities of the enzymes. Antonie Van Leeuwenhoek 105(6):1179–1190.  https://doi.org/10.1007/s10482-014-0179-3 CrossRefPubMedGoogle Scholar
  23. Rustler S, Motejadded H, Altenbuchner J, Stolz A (2008) Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid. Appl Microbiol Biotechnol 80(1):87–97.  https://doi.org/10.1007/s00253-008-1531-1 CrossRefPubMedGoogle Scholar
  24. Saeed A, Shahzad D, Faisal M, Larik FA, El-Seedi HR, Channar PA (2017) Developments in the synthesis of the antiplatelet and antithrombotic drug (S)-clopidogrel. Chirality 29(11):684–707.  https://doi.org/10.1002/chir.22742 CrossRefPubMedGoogle Scholar
  25. Shangguan JJ, Fan LQ, Ju X, Zhu QQ, Wang FJ, Zhao J, Xu JH (2012) Expression and characterization of a novel enantioselective lipase from Aspergillus fumigatus. Appl Biochem Biotechnol 168(7):1820–1833.  https://doi.org/10.1007/s12010-012-9899-x CrossRefPubMedGoogle Scholar
  26. Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A (2009) Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandelic amide from benzaldehyde and cyanide. Adv Synth Catal 351(10):1531–1538.  https://doi.org/10.1002/adsc.200900087 CrossRefGoogle Scholar
  27. Sosedov O, Baum S, Bürger S, Matzer K, Kiziak C, Stolz A (2010) Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol 76(11):3668–3674.  https://doi.org/10.1128/AEM.00341-10 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sosedov O, Stolz A (2014) Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol 98(4):1595–1607.  https://doi.org/10.1007/s00253-013-4968-9 CrossRefPubMedGoogle Scholar
  29. Sun HH, Wang HL, Gao WY, Chen LF, Wu K, Wei DZ (2015) Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans L19 and identification of enantiocomplementary mutants toward mandelonitrile. Biochem Biophys Res Commun 468(4):820–825.  https://doi.org/10.1016/j.bbrc.2015.11.038 CrossRefPubMedGoogle Scholar
  30. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile, spiral forming, industrial enzymes. J Appl Microbiol 106(3):703–727.  https://doi.org/10.1111/j.1365-2672.2008.03941.x CrossRefPubMedGoogle Scholar
  31. Veselá AB, Křenková A, Martínková L (2015) Exploring the potential of fungal arylacetonitrilases in mandelic acid synthesis. Mol Biotechnol 57(5):466–474.  https://doi.org/10.1007/s12033-015-9840-y CrossRefPubMedGoogle Scholar
  32. Veselá AB, Rucká L, Kaplan O, Pelantová H, Nešvera J, Pátek M, Martínková L (2016) Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles. Appl Microbiol Biotechnol 100(5):2193–2202.  https://doi.org/10.1007/s00253-015-7023-1 CrossRefPubMedGoogle Scholar
  33. Wang HL, Sun HH, Wei DZ (2013a) Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. BMC Biotechnol 13:14.  https://doi.org/10.1186/1472-6750-13-14 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang P, Yang JF, Jiang L, Feng J, Yang CL, Li DL (2013b) A bi-enzymatic system for efficient enantioselective bioconversion of racemic mandelic acid. J Mol Catal B-Enzym 94:47–50.  https://doi.org/10.1016/j.molcatb.2013.05.009 CrossRefGoogle Scholar
  35. Wang HL, Fan HY, Sun HH, Zhao L, Wei DZ (2015a) Process development for the production of (R)-(−)-mandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Org Process Res Dev 19(12):2012–2016.  https://doi.org/10.1021/acs.oprd.5b00269 CrossRefGoogle Scholar
  36. Wang HL, Gao WY, Sun HH, Chen LF, Zhang L, Wang XD, Wei DZ (2015b) Protein engineering of a nitrilase from Burkholderia cenocepacia J2315 for efficient and enantioselective production of (R)-o-chloromandelic acid. Appl Environ Microbiol 81(24):8469–8477.  https://doi.org/10.1128/AEM.02688-15 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang P, Li DL Yang JF, Jiang L, Feng J, Yang CL, Shi RF (2014) Immobilization of (S)-mandelate dehydrogenase and its catalytic performance on stereoselective transformation of mandelic acid. J Taiwan Inst Chem Eng 45(3):744–748.  https://doi.org/10.1016/j.jtice.2013.09.016 CrossRefGoogle Scholar
  38. Xiao MT, Huang YY, Shi XA, Guo YH (2005) Bioreduction of phenylglyoxylic acid to R-(–)-mandelic acid by Saccharomyces cerevisiae FD11b. Enzym Microb Technol 37(6):589–596.  https://doi.org/10.1016/j.enzmictec.2005.02.018 CrossRefGoogle Scholar
  39. Xiao MT, Huang YY, Ye J, Guo YH (2008) Study on the kinetic characteristics of the asymmetric production of R-(–)-mandelic acid with immobilized Saccharomyces cerevisiae FD11b. Biochem Eng J 39(2):311–318.  https://doi.org/10.1016/j.bej.2007.10.002 CrossRefGoogle Scholar
  40. Xue YP, Xu M, Chen HS, Liu ZQ, Wang YJ, Zheng YG (2013a) A novel integrated bioprocess for efficient production of (R)-(–)-mandelic acid with immobilized Alcaligenes faecalis ZJUTB10. Org Process Res Dev 17(2):213–220.  https://doi.org/10.1021/op3001993 CrossRefGoogle Scholar
  41. Xue YP, Tian FF, Ruan LT, Liu ZQ, Zheng YG, Shen YC (2013b) Concurrent obtaining of aromatic (R)-2-hydroxyacids and aromatic 2-ketoacids by asymmetric oxidation with a newly isolated Pseudomonas aeruginosa ZJB1125. J Biotechnol 167(3):271–278.  https://doi.org/10.1016/j.jbiotec.2013.06.015 CrossRefPubMedGoogle Scholar
  42. Yamamoto K, Oishi K, Fujimatsu I, Komatsu KI (1991) Production of R-(–)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 57(10):3028–3032PubMedPubMedCentralGoogle Scholar
  43. Yan PC, Xie JH, Zhang XD, Chen K, Li YQ, Zhou QL, Che DQ (2014) Direct asymmetric hydrogenation of α-keto acids by using the highly efficient chiral spiro iridium catalysts. Chem Commun 50(100):15987–15990.  https://doi.org/10.1039/c4cc07643e CrossRefGoogle Scholar
  44. Yao CJ, Cao Y, Wu SS, Li S, He BF (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid. J Mol Catal B-Enzym 85-86:105–110.  https://doi.org/10.1016/j.molcatb.2012.08.016 CrossRefGoogle Scholar
  45. Yildirim D, Tükel SS (2014) Asymmetric ammonolysis of (R/S)-mandelic acid by immobilized lipases via direct amidation of mandelic acid in biphasic media. Biocatal Biotransform 32(5–6):251–258.  https://doi.org/10.3109/10242422.2014.971120 CrossRefGoogle Scholar
  46. Yilmaz E (2012) Enantioselective enzymatic hydrolysis of racemic drugs by encapsulation in sol-gel magnetic sporopollenin. Bioprocess Biosyst Eng 35(4):493–502.  https://doi.org/10.1007/s00449-011-0622-z CrossRefPubMedGoogle Scholar
  47. Yutthalekha T, Warakulwit C, Limtrakul J, Kuhn A (2015) Enantioselective recognition of DOPA by mesoporous platinum imprinted with mandelic acid. Electroanalysis 27(9):2209–2213.  https://doi.org/10.1002/elan.201500145 CrossRefGoogle Scholar
  48. Yutthalekha T, Wattanakit C, Lapeyre V, Nokbin S, Warakulwit C, Limtrakul J, Kuhn A (2016) Asymmetric synthesis using chiral-encoded metal. Nat Commun 7:12678.  https://doi.org/10.1038/ncomms12678 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhang ZJ, Pan JA, Liu JF, Xu JH, He YC, Liu YY (2011) Significant enhancement of (R)-mandelic acid production by relieving substrate inhibition of recombinant nitrilase in toluene–water biphasic system. J Biotechnol 152(1–2):24–29.  https://doi.org/10.1016/j.jbiotec.2011.01.013 CrossRefPubMedGoogle Scholar
  50. Zhang CS, Zhang ZJ, Li CX, Yu HL, Zheng GW, Xu JH (2012) Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol 5(1):91–99.  https://doi.org/10.1007/s00253-012-3993-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of BiotransformationInstitute of Microbiology of the Czech Academy of SciencesPragueCzech Republic

Personalised recommendations