Advertisement

Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics

  • Chengyue Liang
  • Yong Huang
  • Yun Wang
  • Quanhui Ye
  • Zuotao Zhang
  • Hui WangEmail author
Environmental biotechnology

Abstract

PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.

Keywords

Polycyclic aromatic hydrocarbons (PAHs) Biodegradation PAH ring-hydroxylating dioxygenases Gene-targeted metagenomics PAH-degrading bacteria 

Notes

Acknowledgements

We are very grateful to Dr. Jixia Li and Houlin Jiang for their assistance in environmental samples collection.

Funding information

This research was financially supported by National Natural Science Foundation of China (Grant No. 41573065 and Grant No. 41773082) and the Major Science and Technology Program for Water Pollution Control and Treatment in China (No. 2017ZX07202002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

253_2018_9613_MOESM1_ESM.pdf (389 kb)
ESM 1 (PDF 389 kb)

References

  1. Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20(7):4311–4326CrossRefGoogle Scholar
  2. Bengtsson G, Torneman N, De Lipthay JR, Sorensen SJ (2013) Microbial diversity and PAH catabolic genes tracking spatial heterogeneity of PAH concentrations. Microb Ecol 65(1):91–100CrossRefGoogle Scholar
  3. Brett R, Baldwin CHN, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69(6):3350–3358CrossRefGoogle Scholar
  4. Bruijn FJD (2012) Handbook of molecular microbial ecology, I: metagenomics and complementary approaches. Wiley-Blackwell, New JerseyGoogle Scholar
  5. Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58(1–2):85–97CrossRefGoogle Scholar
  6. Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAHs-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736CrossRefGoogle Scholar
  7. Cebron A, Norini MP, Beguiristain T, Leyval C (2008) Real-time PCR quantification of PAHs-ring hydroxylating dioxygenase (PAHs-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73(2):148–159CrossRefGoogle Scholar
  8. Chadhain SMN, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72(6):4078–4087CrossRefGoogle Scholar
  9. Chen CF, Chen CW, Dong CD, Kao CM (2013) Assessment of toxicity of polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbor, Taiwan. Sci Total Environ 463-464(5):1174–1181CrossRefGoogle Scholar
  10. DeBruyn JM, Chewning CS, Sayler GS (2007) Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol 41(15):5426–5432CrossRefGoogle Scholar
  11. Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K, Kogel-Knabner I, Smalla K (2010) Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 76(14):4765–4771CrossRefGoogle Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefGoogle Scholar
  13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinform 27(16):2194CrossRefGoogle Scholar
  14. Fakruddin M, Mazumdar RM, Chowdhury A, Hossain MN, Mahajan S, Islam S (2013) Pyrosequencing: a next generation sequencing technology. World Appl Sci J 24(12):1558–1571Google Scholar
  15. Flocco CG, Gomes N, Mac Cormack W, Smalla K (2009) Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 11(3):700–714CrossRefGoogle Scholar
  16. Gallego S, Vila J, Tauler M, Maria Nieto J, Breugelmans P, Springael D, Grifoll M (2014) Community structure and PAH ring-hydroxylating dioxygenase genes of a marine pyrene-degrading microbial consortium. Biodegradation 25(4):543–556CrossRefGoogle Scholar
  17. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7(386):1369Google Scholar
  18. Gillespie IM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol 31(6):329–332CrossRefGoogle Scholar
  19. Gomes NC, Borges LR, Paranhos R, Pinto FN, Krogerrecklenfort E, Mendonca-Hagler LC, Smalla K (2007) Diversity of ndo genes in mangrove sediments exposed to different sources of polycyclic aromatic hydrocarbon pollution. Appl Environ Microbiol 73(22):7392–7399CrossRefGoogle Scholar
  20. Gong M, Ning Y, Han M, Zhao C, Tian J, Li L, Xiao H, Liu G (2017) A comparison of next-generation sequencing with clone sequencing in the diet analysis of Asian great bustard. Conserv Genet Resour 1–3Google Scholar
  21. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40(3–4):237–264CrossRefGoogle Scholar
  22. Guo C, Ke L, Dang Z, Tam NF (2011) Temporal changes in Sphingomonas and Mycobacterium populations in mangrove sediments contaminated with different concentrations of polycyclic aromatic hydrocarbons (PAHs). Mar Pollut Bull 62(1):133–139CrossRefGoogle Scholar
  23. Han X-M, Liu Y-R, Zheng Y-M, Zhang X-X, He J-Z (2014) Response of bacterial pdo1, nah, and C12O genes to aged soil PAH pollution in a coke factory area. Environ Sci Pollut Res 21(16):9754–9763CrossRefGoogle Scholar
  24. Huang J (2013) Apllication of next-generation sequencing and bioinformatics approaches for elucidating microbial diversity and for bioprospecing in Antarctic freshwater lake ecosystems. Dissertation, The University of Alabama at BirminghamGoogle Scholar
  25. Isaac P, Sánchez LA, Bourguignon N, Cabral ME, Ferrero MA (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeterior Biodegrad 82(4):207–214CrossRefGoogle Scholar
  26. Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA, Tiedje JM (2010) Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME J 4(2):279–285CrossRefGoogle Scholar
  27. Johnsen AR, de Lipthay JR, Sorensen SJ, Ekelund F, Christensen P, Andersen O, Karlson U, Jacobsen CS (2006) Microbial degradation of street dust polycyclic aromatic hydrocarbons in microcosms simulating diffuse pollution of urban soil. Environ Microbiol 8(3):535–545CrossRefGoogle Scholar
  28. Jones MD, Crandell DW, Singleton DR, Aitken MD (2011) Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 13(10):2623–2632CrossRefGoogle Scholar
  29. Jouanneau Y, Martin F, Krivobok S, Willison CJ (2011) Ring-hydroxylating dioxygenases involved in PAH biodegradation: structure, function, biodiversity. In: Koukkou A-I (ed) Microbial bioremediation of non-metals: current research. Caister Academic Press, Norfolk, pp 149–175Google Scholar
  30. Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9CrossRefGoogle Scholar
  31. Keshri J, Mishra A, Jha B (2013) Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics. Microbiol Res 168(3):165–173CrossRefGoogle Scholar
  32. Lee S, Cantarel B, Henrissat B, Gevers D, Birren BW, Huttenhower C, Ko G (2014) Gene-targeted metagenomic analysis of glucan-branching enzyme gene profiles among human and animal fecal microbiota. ISME J 8(3):493–503CrossRefGoogle Scholar
  33. Li X, Hou L, Liu M, Zheng Y, Li Y, Lin X (2015) Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Appl Microbiol Biotechnol 99(8):3639–3649CrossRefGoogle Scholar
  34. Liang C, Huang Y, Wang H (2019) pahE, a functional marker gene for polycyclic aromatic hydrocarbon-degrading bacteria. Appl Environ Microbiol 85:e02399-18.  https://doi.org/10.1128/AEM.02399-18
  35. Liang Y, Nostrand JDV, Ye D, He Z, Wu L, Zhang X, Li G, Zhou J (2011) Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J 5(3):403CrossRefGoogle Scholar
  36. Lloyd-Jones G, Laurie AD, Hunter DW, Fraser R (1999) Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated New Zealand soils. FEMS Microbiol Ecol 29(1):69–79CrossRefGoogle Scholar
  37. Lozada M, Mercadal JPR, Guerrero LD, Di Marzio WD, Ferrero MA, Dionisi HM (2008) Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia. BMC Microbiol 8:50CrossRefGoogle Scholar
  38. Lu RK (2000) Soil agricultural chemical analysis method. China Agricultural Science and Technology Press, Beijing, pp 1–315Google Scholar
  39. Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A (2014) Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J 9(5):1152CrossRefGoogle Scholar
  40. Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11(1–2):121–127CrossRefGoogle Scholar
  41. Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y (2013) Diversity and catalytic potential of PAHs-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 97(11):5125–5135CrossRefGoogle Scholar
  42. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13:31CrossRefGoogle Scholar
  43. Meynet P, Hale SE, Davenport RJ, Cornelissen G, Breedveld GD, Werner D (2012) Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ Sci Technol 46(9):5057–5066CrossRefGoogle Scholar
  44. Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O (2015) Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res 22(6):4725–4735CrossRefGoogle Scholar
  45. Oksanen J, Kindt R, Legendre P, OHara B (2007) The vegan package-Community ecology package R Package Version 2.0–9Google Scholar
  46. Pester M, Maixner F, Berry D, Rattei T, Koch H, Lücker S, Nowka B, Richter A, Spieck E, Lebedeva E (2014) NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite-xidizing Nitrospira. Environ Microbiol 16(10):3055–3071CrossRefGoogle Scholar
  47. Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14(2):525–539CrossRefGoogle Scholar
  48. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537CrossRefGoogle Scholar
  49. Sheng Y, Wang G, Hao C, Xie Q, Zhang Q (2016) Microbial community structures in petroleum contaminated soils at an oilfield, Hebei, China. CLEAN-Soil, Air, Water 44(7):829–839CrossRefGoogle Scholar
  50. Stach JE, Burns RG (2002) Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4(3):169–182CrossRefGoogle Scholar
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefGoogle Scholar
  52. Tu Q, Deng Y, Yan Q, Shen L, Lin L, He Z, Wu L, Van Nostrand JD, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide RB, Brown JH, Zhou J (2016) Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Mol Ecol 25:2937–2948CrossRefGoogle Scholar
  53. Vila J, Tauler M, Grifoll M (2015) Bacterial PAH degradation in marine and terrestrial habitats. Curr Opin Biotechnol 33:95–102CrossRefGoogle Scholar
  54. Wang Q, Iii QJF, Fish JA, Tae KL, Sun Y, Tiedje JM, Cole JR (2013) Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. Mbio 4(5):00592–00513CrossRefGoogle Scholar
  55. Wu P, Wang YS, Sun FL, Wu ML, Peng YL (2014) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China. Appl Microbiol Biotechnol 98(2):875–884CrossRefGoogle Scholar
  56. Xia X, Xia N, Lai Y, Dong J, Zhao P, Zhu B, Li Z, Ye W, Yuan Y, Huang J (2015) Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River. Chemosphere 128:236–244CrossRefGoogle Scholar
  57. Yang Y, Wang J, Liao J, Xie S, Huang Y (2014) Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. Microb Ecol 68(4):785–793CrossRefGoogle Scholar
  58. Yang Y, Wang J, Liao J, Xie S, Huang Y (2015) Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 99(4):1935–1946CrossRefGoogle Scholar
  59. Xu Y, Zhou N-Y (2017) Microbial remediation of aromatics-contaminated soil. Front Environ Sci Eng 11(2):1CrossRefGoogle Scholar
  60. Yeates C, Holmes AJ, Gillings MR (2010) Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ Microbiol 2(6):644–653CrossRefGoogle Scholar
  61. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Joint Laboratory on Environment Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina
  2. 2.College of Life ScienceShihezi UniversityShiheziChina

Personalised recommendations