Advertisement

Introduction of heterologous transcription factors and their target genes into Penicillium oxalicum leads to increased lignocellulolytic enzyme production

  • Chengqiang Xia
  • Zhonghai Li
  • Yanning Xu
  • Piao Yang
  • Liwei Gao
  • Qin Yan
  • Shiying Li
  • Yanan Wang
  • Yinbo Qu
  • Xin SongEmail author
Applied genetics and molecular biotechnology
  • 50 Downloads

Abstract

Genetic engineering of transcription factors is an efficient strategy to improve lignocellulolytic enzyme production in fungi. In this study, the xylanase transcriptional regulators of Trichoderma reesei (Xyr1) and Neurospora crassa (XLR-1), as well as their constitutively active mutants (Xyr1A824V and XLR-1A828V), were heterologously expressed in Penicillium oxalicum. The two heterologous regulators were identified to be able to activate lignocellulolytic enzyme gene expression in P. oxalicum. Particularly, expression of T. reesei Xyr1 resulted in a higher cellulase production level compared with the expression of native xylanase transcriptional regulator XlnR using the same promoter. Xyr1A824V and XLR-1A828V were found to be able to confer P. oxalicum more enhanced lignocellulolytic abilities than wild-type regulators Xyr1 and XLR-1. Furthermore, introduction of regulatory modules containing Xyr1A824V/XLR-1A828V and their target cellulase genes resulted in greater increases in cellulase production than alone expression of transcriptional regulators. Through the cumulative introduction of three regulatory modules containing regulator mutants and their corresponding target cellulase genes from P. oxalicum, T. reesei, and N. crassa, a 2.8-fold increase in cellulase production was achieved in P. oxalicum.

Keywords

Penicillium oxalicum Transcription factor XlnR Lignocellulolytic enzyme Heterologous expression 

Notes

Funding information

This study was funded by the National Natural Science Foundation of China (Grant nos. 31030001, 31270089, 31370086, and 31670079), and supported by State Key Laboratory of Microbial Technology Open Projects Fund (No. M2016-07).

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

253_2018_9612_MOESM1_ESM.pdf (956 kb)
ESM 1 (PDF 956 kb)

References

  1. Alazi E, Ram AFJ (2018) Modulating transcriptional regulation of plant biomass degrading enzyme networks for rational design of industrial fungal strains. Front Bioeng Biotechnol 6(133).  https://doi.org/10.3389/fbioe.2018.00133
  2. Amore A, Giacobbe S, Faraco V (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr Genomics 14(4):230–249.  https://doi.org/10.2174/1389202911314040002 Google Scholar
  3. Canosa I, Rojo F, Alonso JC (1996) Site-specific recombination by the β protein from the streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res 24:2712–2717.  https://doi.org/10.1093/nar/24.14.2712 Google Scholar
  4. Chen M, Qin YQ, Cao Q, Liu GD, Li J, Li ZH, Zhao J, Qu YB (2013) Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellular β-glucosidase in Penicillium decumbens. Bioresour Technol 137:33–40.  https://doi.org/10.1016/j.biortech.2013.03.099 Google Scholar
  5. Coradetti ST, Craig JP, Xiong Y, Shock T, Tian CG, Glass NL (2012) Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci U S A 109(19):7397–7402.  https://doi.org/10.1073/pnas.1200785109 Google Scholar
  6. Coradetti ST, Xiong Y, Glass NL (2013) Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiologyopen 2(4):595–609.  https://doi.org/10.1002/mbo3.94 Google Scholar
  7. Craig JP, Coradetti ST, Starr TL, Glass NL (2015) Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1. MBio 6(5):e01452–e01415.  https://doi.org/10.1128/mBio.01452-15 Google Scholar
  8. Derntl C, Gudynaite-Savitch L, Calixte S, White T, Mach RL, Mach-Aigner AR (2013) Mutation of the xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnol Biofuels 6(1):62.  https://doi.org/10.1186/1754-6834-6-62 Google Scholar
  9. Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10(30):30.  https://doi.org/10.1186/s13068-017-0717-0 Google Scholar
  10. Fang X, Shen Y, Zhao J, Bao XM, Qu YB (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819.  https://doi.org/10.1016/j.biortech.2009.11.050 Google Scholar
  11. Furukawa T, Shida Y, Kitagami N, Mori K, KatoM KT, Okada H, Ogasawara W, Morikawa Y (2009) Identification of specific binding sites for XYR1, a transcriptional activator of cellulolytic and xylanolytic genes in Trichoderma reesei. Fungal Genet Biol 46(8):564–574.  https://doi.org/10.1016/j.fgb.2009.04.001 Google Scholar
  12. Gao LW, Li ZH, Xia CQ, Qu YB, Liu M, Yang P, Yu LL, Song X (2017a) Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production in Penicillium oxalicum. Biotechnol Biofuels 10(100):100.  https://doi.org/10.1186/s13068-017-0783-3 Google Scholar
  13. Gao LW, Xia CQ, Xu JD, Li ZH, Yu LL, Liu GD, Song X, Qu YB (2017b) Constitutive expression of chimeric transcription factors enables cellulase synthesis under non-inducing conditions in Penicillium oxalicum. Biotechnol J 12(11).  https://doi.org/10.1002/biot.201700119
  14. Glass NL, Schmoll M, Cate JHD, Coradetti S (2013) Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 67:477–498.  https://doi.org/10.1146/annurev-micro-092611-150044 Google Scholar
  15. Gruber F, Visser J, Kubicek CP, de Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18(1):71–76Google Scholar
  16. Han XL, Song WX, Liu GD, Li ZH, Yang P, Qu YB (2017) Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour Technol 227:155–163.  https://doi.org/10.1016/j.biortech.2016.11.079 Google Scholar
  17. Hartmann T, Dumig M, Jaber BM, Szewczyk E, Olbermann P, Morschhauser J, Krappmann S (2010) Validation of a self-excising marker in the human pathogen Aspergillus fumigatus by employing the β-rec/six site-specific recombination system. Appl Environ Microbiol 76(18):6313–6317.  https://doi.org/10.1128/AEM.00882-10 Google Scholar
  18. Kang NK, Kim EK, Kim YU, Lee B, Jeong WJ, Jeong BR, Chang YK (2017) Increased lipid production by heterologous expression of AtWRI1 transcription factor in Nannochloropsis salina. Biotechnol Biofuels 10(231):231.  https://doi.org/10.1186/s13068-017-0919-5 Google Scholar
  19. Klaubauf S, Narang HM, Post H, Zhou MM, Brunner K, Mach-Aigner AR, Mach RL, Heck AJR, Altelaar AFM, de Vries RP (2014) Similar is not the same: differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi. Fungal Genet Biol 72:73–81.  https://doi.org/10.1016/j.fgb.2014.07.007 Google Scholar
  20. Kolbe J, Kubicek CP (1990) Quantification and identification of the main components of the Trichoderma cellulase complex with monoclonal-antibodies using an enzyme-linked-immunosorbent-assay (ELISA). Appl Microbiol Biotechnol 34(1):26–30.  https://doi.org/10.1007/Bf00170918 Google Scholar
  21. Kricka W, Fitzpatrick J, Bond U (2015) Challenges for the production of bioethanol from biomass using recombinant yeasts. Adv Appl Microbiol 92:89–125.  https://doi.org/10.1016/bs.aambs.2015.02.003 Google Scholar
  22. Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19.  https://doi.org/10.1186/1754-6834-2-19 Google Scholar
  23. Li ZH, Yao GS, Wu RM, Gao LW, Kan QB, Liu M, Yang P, Liu GD, Qin YQ, Song X, Zhong YH, Fang X, Qu YB (2015) Synergistic and dose-controlled regulation of cellulase gene expression in Penicillium oxalicum. PLoS Genet 11(9):e1005509.  https://doi.org/10.1371/journal.pgen.1005509 Google Scholar
  24. Liu GD, Zhang L, Wei XM, Zou G, Qin YQ, Ma L, Li J, Zheng HJ, Wang SY, Wang CS, Xun LY, Zhao GP, Zhou ZH, Qu YB (2013) Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens. PLoS One 8(2):e55185.  https://doi.org/10.1371/journal.pone.0055185 Google Scholar
  25. Liu GD, Qin YQ, Li ZH, Qu YB (2014) Improving lignocellulolytic enzyme production with Penicillium: from strain screening to systems biology. Biofuels 4(5):523–534.  https://doi.org/10.4155/bfs.13.38 Google Scholar
  26. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428Google Scholar
  27. Nakari-Setala T, Paloheimo M, Kallio J, Vehmaanpera J, Pentillä M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75(14):4853–4860.  https://doi.org/10.1128/AEM.00282-09 Google Scholar
  28. Pentillä M, Nevalainen H, Ratto M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61(2):155–164.  https://doi.org/10.1016/0378-1119(87)90110-7 Google Scholar
  29. Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology 158(Pt 1):58–68.  https://doi.org/10.1099/mic.0.054031-0 Google Scholar
  30. Qian YC, Zhong LX, Gao J, Sun NN, Wang YF, Sun GY, Qu YB, Zhong YH (2017) Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues. Microb Cell Factories 16(1):207.  https://doi.org/10.1186/s12934-017-0825-3 Google Scholar
  31. Qin YQ, Zheng K, Liu GD, Chen M, Qu YB (2013) Improved cellulolytic efficacy in Penicilium decumbens via heterologous expression of Hypocrea jecorina endoglucanase II. Arch Biol Sci 65(1):305–314.  https://doi.org/10.2298/abs1301305q Google Scholar
  32. Raulo R, Kokolski M, Archer DB (2016) The roles of the zinc finger transcription factors XlnR, ClrA and ClrB in the breakdown of lignocellulose by Aspergillus niger. AMB Express 6:5.  https://doi.org/10.1186/s13568-016-0177-0
  33. Rauscher R, Würleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttila M, Mach RL (2006) Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell 5(3):447–456.  https://doi.org/10.1128/EC.5.3.447-456.2006 Google Scholar
  34. Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246.  https://doi.org/10.1016/j.biortech.2015.01.048 Google Scholar
  35. Stricker AR, Grosstessner-Hain K, Würleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5(12):2128–2137.  https://doi.org/10.1128/EC.00211-06 Google Scholar
  36. Sun JP, Tian CG, Diamond S, Glass NL (2012) Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 11(4):482–493.  https://doi.org/10.1128/EC.05327-11 Google Scholar
  37. Szewczyk E, Kasuga T, Fan ZL (2014) A new variant of self-excising β-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa. J Microbiol Methods 100:17–23.  https://doi.org/10.1016/j.mimet.2014.02.007 Google Scholar
  38. Tian CG, Beeson WT, Iavarone AT, Sun JP, Marletta MA, Cate JHD, Glass NL (2009) Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci U S A 106(52):22157–22162.  https://doi.org/10.1073/pnas.0906810106 Google Scholar
  39. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Microbiol Genet Bull 13:42–43Google Scholar
  40. Wang HW, Zhang B, Hao YJ, Huang J, Tian AG, Liao Y, Zhang JS, Chen SY (2007) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52(4):716–729.  https://doi.org/10.1111/j.1365-313X.2007.03268.x Google Scholar
  41. Wang HL, Li Z, Jia RN, Yin J, Li AY, Xia LQ, Yin YL, Muller R, Fu J, Stewart AF, Zhang YM (2018) ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes. Nucleic Acids Res 46(5):e28.  https://doi.org/10.1093/nar/gkx1249 Google Scholar
  42. Yao GS, Li ZH, Gao LW, Wu RM, Kan QB, Liu GD, Qu YB (2015) Redesigning the regulatory pathway to enhance cellulase production in Penicillium oxalicum. Biotechnol Biofuels 8:71.  https://doi.org/10.1186/s13068-015-0253-8 Google Scholar
  43. Yao GS, Wu RM, Kan QB, Gao LW, Liu M, Yang P, Du J, Li ZH, Qu YB (2016) Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels 9:78.  https://doi.org/10.1186/s13068-016-0491-4 Google Scholar
  44. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41(11):973–981.  https://doi.org/10.1016/j.fgb.2004.08.001 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chengqiang Xia
    • 1
  • Zhonghai Li
    • 2
    • 3
  • Yanning Xu
    • 1
  • Piao Yang
    • 1
  • Liwei Gao
    • 1
  • Qin Yan
    • 2
    • 3
  • Shiying Li
    • 1
  • Yanan Wang
    • 2
    • 3
  • Yinbo Qu
    • 1
    • 4
  • Xin Song
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
  2. 2.State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of SciencesJinanChina
  3. 3.Shandong Provincial Key Laboratory of Microbial Engineering, Department of BioengineeringQilu University of Technology, Shandong Academy of SciencesJinanChina
  4. 4.National Glycoengineering Research CenterShandong UniversityQingdaoChina

Personalised recommendations