Applied Microbiology and Biotechnology

, Volume 103, Issue 5, pp 2217–2228 | Cite as

Discovery and identification of antimicrobial peptides in Sichuan pepper (Zanthoxylum bungeanum Maxim) seeds by peptidomics and bioinformatics

  • Xiaoyan Hou
  • Shanshan Li
  • Qingying Luo
  • Guanghui Shen
  • Hejun Wu
  • Meiliang Li
  • Xingyan Liu
  • Anjun Chen
  • Meng Ye
  • Zhiqing ZhangEmail author
Biotechnologically relevant enzymes and proteins


Antimicrobial peptides (AMPs) have generated growing attention because of the increasing bacterial resistance. However, the discovery and identification of AMPs have proven to be challenging due to the complex purification procedure associated with conventional methods. For the reasons given above, it is necessary to explore more efficient ways to obtain AMPs. We established a new method for discovery and identification of novel AMPs by proteomics and bioinformatics from Zanthoxylum bungeanum Maxim seeds protein hydrolysate directly. This process was initially achieved by employing ultra-performance liquid chromatography-electrospray ionization-mass spectrometry/mass (UPLC-ESI-MS/MS) spectrometry to identify peptides derived from Z. bungeanum Maxim seed protein hydrolysates. Three online servers were introduced to predict potential AMPs. Sixteen potential AMPs ranging from 1.5 to 2.7 kDa were predicted and chemically synthesized, one of which, designated NP-6, inhibited activity against all the tested strains according to antimicrobial assay. Time-killing assay indicated that NP-6 could quickly kill almost all the Escherichia coli within 180 min and Staphylococcus aureus at 360 min. Moreover, the simulation 3D structure of NP-6 was consisted of α-helix and random coil, and this was verified by circular dichroism (CD) spectra. At last, the scanning electron microscope (SEM) images of E. coli and S. aureus treated by NP-6 demonstrated that NP-6 had a significant effect on bacteria cell morphology. Our findings provide an efficient approach for discovery of AMPs, and Z. bungeanum Maxim seeds may be a nature resource to extract antimicrobial agents.


Zanthoxylum bungeanum Maxim seeds Antimicrobial peptides Prediction Peptidomics Bioinformatics 


Funding information

All the authors are grateful to the Scientific Fund of the Application Fundamental Project [2016-JY-0118] and the Key Project of Research and Development Program [18ZDYF1175], the Science and Technology Department of Sichuan Province for the financial assistance in this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals by any of the authors.

Supplementary material

253_2018_9593_MOESM1_ESM.pdf (245 kb)
ESM 1 (PDF 245 kb)


  1. Amaral AC, Silva ON, Mundim NCCR, De Carvalho MJA, Migliolo L, Leite JRSA, Prates MV, Bocca AL, Franco OL, Felipe MSS (2012) Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics. Peptides 37:301–308. CrossRefGoogle Scholar
  2. Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168. CrossRefGoogle Scholar
  3. Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-De-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:1–9. CrossRefGoogle Scholar
  4. Bishop BM, Juba ML, Devine MC, Barksdale SM, Rodriguez CA, Chung MC, Russo PS, Vliet KA, Schnur JM, Van Hoek ML (2015) Bioprospecting the American alligator (Alligator mississippiensis) host defense peptidome. PLoS One 10:1–17. Google Scholar
  5. Bishop BM, Juba ML, Russo PS, Devine M, Barksdale SM, Scott S, Settlage R, Michalak P, Gupta K, Vliet K, Schnur JM, Van Hoek ML (2017) Discovery of novel antimicrobial peptides from Varanus komodoensis (Komodo dragon) by large-scale analyses and de-novo-assisted sequencing using electron-transfer dissociation mass spectrometry. J Proteome Res 16:1470–1482. CrossRefGoogle Scholar
  6. Branco P, Francisco D, Chambon C, Hébraud M, Arneborg N, Almeida MG, Caldeira J, Albergaria H (2014) Identification of novel GAPDH-derived antimicrobial peptides secreted by Saccharomyces cerevisiae and involved in wine microbial interactions. Appl Microbiol Biotechnol 98:843–853. CrossRefGoogle Scholar
  7. Carlier L, Joanne P, Khemtémourian L, Lacombe C, Nicolas P, El Amri C, Lequin O (2015) Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides. Biophys Chem 196:40–52. CrossRefGoogle Scholar
  8. Da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040. CrossRefGoogle Scholar
  9. Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J (2014) Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 35:8028–8039. CrossRefGoogle Scholar
  10. Dong X, Jiang T, Shen G, Zhang Z (2016) Study on fresh keeping of chilled pork by using crude protein hydrolysate from Zanthoxylum bungeanum Maxim. seed. J Nucl Agric Sci 30:1540–1547. Google Scholar
  11. Dong X, Shen G, Wang J, Ma L, Li S, Zhang Z (2018) Effect of low temperature on antibacteria activity of different molecular weight of hydrolysate from Zanthoxylum bungeanum Maxim. seed. J Food Sci Biotechnol 37:639–644. Google Scholar
  12. Faingold O, Cohen T, Shai Y (2012) A GxxxG-like motif within HIV-1 fusion peptide is critical to its immunosuppressant activity, structure, and interaction with the transmembrane domain of the T-cell receptor. J Biol Chem 287:33503–33511. CrossRefGoogle Scholar
  13. Giacometti J, Buretić-Tomljanović A (2017) Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 230:91–98. CrossRefGoogle Scholar
  14. Giangaspero A, Sandri L, Tossi A (2001) Amphipathic a helical antimicrobial peptides. Eur J Biochem / FEBS 268:5589–5600.<4::AID-BIP30>3.0.CO;2-M CrossRefGoogle Scholar
  15. Gong Y, Huang Y, Zhou L, Shi X, Guo Z, Wang M, Jiang W (2009) Chemical composition and antifungal activity of the fruit oil of Zanthoxylum bungeanum Maxim. (Rutaceae) from China. J Essent Oil Res 21:174–178. CrossRefGoogle Scholar
  16. Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:963–968. CrossRefGoogle Scholar
  17. Jiang TL, Wu HY, Wang H, Zhang ZQ (2014) Optimization of antibacterial peptides preparation using pepsin from prickly ash seed protein by response surface methodology. Sci Technol Food Ind 35:223–226. Google Scholar
  18. Jiang TL, Wu HY, Shen GH, Dong XH, Zhang ZQ (2015) Preparation of antibacterial peptide derived from hydrolysis of prickly ash seed protein by acid protease. Food Sci 36:148–153. Google Scholar
  19. Juba ML, Russo PS, Devine M, Barksdale S, Rodriguez C, Vliet KA, Schnur JM, Van Hoek ML, Bishop BM (2015) Large scale discovery and de novo-assisted sequencing of cationic antimicrobial peptides (CAMPs) by microparticle capture and electron-transfer dissociation (ETD) mass spectrometry. J Proteome Res 14:4282–4295. CrossRefGoogle Scholar
  20. Lata S, Mishra NK, Raghava GPS (2010) AntiBP2: improved version of antibacterial peptide prediction. BMC Bioinformatics 11:1–7. CrossRefGoogle Scholar
  21. Li R, He XL, Xu HD (2008) Melanin isolation from Zanthoxylum bungeanum seeds and protein removal. Acta Botanica Boreali-Occidentalia Sinica 28(12):2558–2563.
  22. Li C, Pu B, Liu XY, Xu DP, Luo SM, Wang CX, Jiang PJ, Pan SX, Li Q, Fu BN (2017) Optimization of salt extraction of protein from Zanthoxylum bungeanum Maxim. seed kernel by response surface methodology. China Oils Fats 6:97–101. Google Scholar
  23. Liu L, Fang Y, Wu J (2013) Flexibility is a mechanical determinant of antimicrobial activity for amphipathic cationic α-helical antimicrobial peptides. Biochim Biophys Acta Biomembr 1828:2479–2486. CrossRefGoogle Scholar
  24. Liu H, Lei M, Du X, Cui P, Zhang S (2015) Identification of a novel antimicrobial peptide from amphioxus Branchiostoma japonicum by in silico and functional analyses. Sci Rep 5:1–12. Google Scholar
  25. Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides : an emerging category of therapeutic agents. 6:1–12.
  26. Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24:1693–1703. CrossRefGoogle Scholar
  27. Pelegrini PB, Murad AM, Silva LP, dos Santos RCP, Costa FT, Tagliari PD, Bloch C, Noronha EF, Miller RNG, Franco OL (2008) Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 29:1271–1279. CrossRefGoogle Scholar
  28. Rončević T, Vukičević D, Ilić N, Krce L, Gajski G, Tonkić M, Goić-Barišić I, Zoranić L, Sonavane Y, Benincasa M, Juretić D, Maravić A, Tossi A (2018) Antibacterial activity affected by the conformational flexibility in glycine-lysine-based α-helical antimicrobial peptides. J Med Chem 61:2925–2936. Google Scholar
  29. Sánchez-Rivera L, Martínez-Maqueda D, Cruz-Huerta E, Miralles B, Recio I (2014) Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 63:170–181. CrossRefGoogle Scholar
  30. Seo JK, Lee MJ, Go H-J, Park TH, Park NG (2012) Purification and characterization of YFGAP, a GAPDH-related novel antimicrobial peptide, from the skin of yellowfin tuna, Thunnus albacares. Fish Shellfish Immunol 33:743–752. CrossRefGoogle Scholar
  31. Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolym - Pept Sci Sect 66:236–248. CrossRefGoogle Scholar
  32. Shi W, Li C, Li M, Zong X, Han D, Chen Y (2016) Antimicrobial peptide melittin against Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Appl Microbiol Biotechnol 100:5059–5067. CrossRefGoogle Scholar
  33. Sirover MA (2014) Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 57:20–25. CrossRefGoogle Scholar
  34. Tang W, Xie Q, Guan J, Jin S, Zhao Y (2014) Phytochemical profiles and biological activity evaluation of Zanthoxylum bungeanum Maxim seed against asthma in murine models. J Ethnopharmacol 152:444–450. CrossRefGoogle Scholar
  35. Tang W, Zhang H, Wang L, Qian H, Qi X (2015) Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chem 168:115–123. CrossRefGoogle Scholar
  36. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S (2009) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:774–780. CrossRefGoogle Scholar
  37. Verdon J, Coutos-Thevenot P, Rodier MH, Landon C, Depayras S, Noel C, La Camera S, Moumen B, Greve P, Bouchon D, Berjeaud JM, Braquart-Varnier C (2016) Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity. Front Microbiol 7:1484. CrossRefGoogle Scholar
  38. Wagener J, Schneider JJ, Baxmann S, Kalbacher H, Borelli C, Nuding S, Küchler R, Wehkamp J, Kaeser MD, Mailänder-Sanchez D, Braunsdorf C, Hube B, Schild L, Forssmann WG, Korting HC, Liepke C, Schaller M (2013) A peptide derived from the highly conserved protein gapdh is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J Investig Dermatol 133:144–153. CrossRefGoogle Scholar
  39. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097. CrossRefGoogle Scholar
  40. Wang Z (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:590D–592D. CrossRefGoogle Scholar
  41. Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093. CrossRefGoogle Scholar
  42. Wu H, Jiang T, Dong X, Shen G, Li S, Zhang Z (2016) Purification and characterization of angiotensin-I converting enzyme inhibitory peptides from prickly ash (Zanthoxylum bungeanum Maxim) seed protein hydrolysates. Int J Food Eng 12:333–342. CrossRefGoogle Scholar
  43. Yang FX, Su YQ, Li XH, Zhang Q, Sun RC (2008a) Studies on the preparation of biodiesel from Zanthoxylum bungeanum Maxim seed oil. J Agric Food Chem 56:7891–7896. CrossRefGoogle Scholar
  44. Yang L, Tian C, Quan M (2008b) Classification of Zanthoxylum bungeanum Maxim seed kernel protein. China Oils Fats 9:006. Google Scholar
  45. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2014a) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8. CrossRefGoogle Scholar
  46. Yang Q, Cao W, Zhou X, Cao W, Xie Y, Wang S (2014b) Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. BMC Complement Altern Med 14:1–8. CrossRefGoogle Scholar
  47. Yang S, Huang H, Wang F, Aweya JJ, Zheng Z, Zhang Y (2018) Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino Acids 50:1–11. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyan Hou
    • 1
  • Shanshan Li
    • 1
  • Qingying Luo
    • 1
  • Guanghui Shen
    • 1
  • Hejun Wu
    • 1
  • Meiliang Li
    • 1
  • Xingyan Liu
    • 1
  • Anjun Chen
    • 1
  • Meng Ye
    • 2
  • Zhiqing Zhang
    • 1
    Email author
  1. 1.College of Food ScienceSichuan Agricultural UniversityYa’anChina
  2. 2.Collge of ForestrySichuan Agricultural UniversityChengduChina

Personalised recommendations