Applied Microbiology and Biotechnology

, Volume 103, Issue 6, pp 2597–2608 | Cite as

Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways

  • Jing Guo
  • Yujin Cao
  • Hui Liu
  • Rubing Zhang
  • Mo XianEmail author
  • Huizhou LiuEmail author
Biotechnological products and process engineering


The biosynthesis of isoprene by microorganisms is a promising green route. However, the yield of isoprene is limited due to the generation of excess NAD(P)H via the mevalonate (MVA) pathway, which converts more glucose into CO2 or undesired reduced by-products. The production of 1,3-propanediol (1,3-PDO) from glycerol is a typical NAD(P)H-consuming process, which restricts 1,3-PDO yield to ~ 0.7 mol/mol. In this study, we propose a strategy of redox cofactor balance by coupling the production of isoprene with 1,3-PDO fermentation. With the introduction and optimization of the dual pathways in an engineered Escherichia coli, ~ 85.2% of the excess NADPH from isoprene pathway was recycled for 1,3-PDO production. The best strain G05 simultaneously produced 665.2 mg/L isoprene and 2532.1 mg/L 1,3-PDO under flask fermentation conditions. The yields were 0.3 mol/mol glucose and 1.0 mol/mol glycerol, respectively, showing 3.3- and 4.3-fold improvements relative to either pathway independently. Since isoprene is a volatile organic compound (VOC) whereas 1,3-PDO is separated from the fermentation broth, their coproduction process does not increase the complexity or cost for the separation from each other. Hence, the presented strategy will be especially useful for developing efficient biocatalysts for other biofuels and biochemicals, which are driven by cofactor concentrations.


Coproduction Isoprene 1,3-Propanediol Cofactor balance Escherichia coli 



The authors appreciate the contribution of the Dr. Haibo Zhang for his advice on strain design. The authors also acknowledge Prof. Haiyan Yang for the assistance on the conduction of GC and HPLC detection.


This work was supported by Natural Science Foundation of China (No. 21572242), and Taishan Scholars Climbing Program of Shandong (No. tspd20150210).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not required.

Supplementary material

253_2018_9578_MOESM1_ESM.pdf (169 kb)
ESM 1 (PDF 168 kb)


  1. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beck ZQ, Cervin MA, Nielsen AT, Peres CM (2013) Compositions and methods of PGL for the increased production of isoprene. USA Patent US8455236B2Google Scholar
  3. Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297CrossRefPubMedGoogle Scholar
  4. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54(4):656–669CrossRefPubMedGoogle Scholar
  5. Cardenas J, Da Silva NA (2016) Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 36:80–89CrossRefPubMedGoogle Scholar
  6. Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A (2015) Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol 25:195–208CrossRefPubMedGoogle Scholar
  7. Celińska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28(4):519–530CrossRefPubMedGoogle Scholar
  8. Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32(6):337–343CrossRefPubMedGoogle Scholar
  9. Dhamankar H, Prather KL (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struct Biol 21(4):488–494CrossRefPubMedGoogle Scholar
  10. Durnin G, Clomburg J, Yeates Z, Alvarez PJ, Zygourakis K, Campbell P, Gonzalez R (2009) Understanding and harnessing the microaerobic metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 103(1):148–161CrossRefPubMedGoogle Scholar
  11. Edwards RA, Keller LH, Schifferli DM (1998) Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207(2):149–157CrossRefPubMedGoogle Scholar
  12. Emptage M, Haynie SL, Laffend LA, Pucci JP, Whited G (2003) Process for the biological production of 1,3-propanediol with high titer. USA Patent US006514733B1Google Scholar
  13. Feher FJ, Kan JK, Mcauliffe JC et al (2013) Purification of isoprene from renewable resources. USA patent 8569562 B2Google Scholar
  14. Gao Y, Liu C, Ding Y, Sun C, Zhang R, Xian M, Zhao G (2014) Development of genetically stable Escherichia coli strains for poly(3-hydroxypropionate) production. PLoS One 9(5):e97845CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89:249–257CrossRefPubMedGoogle Scholar
  16. Kaur G, Srivastava AK, Chand S (2012) Advances in biotechnological production of 1,3-propanediol. Biochem Eng J 64:106–118CrossRefGoogle Scholar
  17. Kim JH, Wang C, Jang HJ, Cha MS, Park JE, Jo SY, Choi ES, Kim SW (2016) Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microb Cell Factories 15(1):214CrossRefGoogle Scholar
  18. King ZA, Feist AM (2014) Optimal cofactor swapping can increase the theoretical yield for chemical production in Escherichia coli and Saccharomyces cerevisiae. Metab Eng 24:117–128CrossRefPubMedGoogle Scholar
  19. Lemuth K, Steuer K, Albermann C (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb Cell Factories 10:29CrossRefGoogle Scholar
  20. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79CrossRefPubMedGoogle Scholar
  21. Liu M, Tolstorukov M, Zhurkin V, Garges S, Adhya S (2004) A mutant spacer sequence between −35 and −10 elements makes the P lac promoter hyperactive and cAMP receptor protein-independent. Proc Natl Acad Sci U S A 101(18):6911–6916CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lombó F, Pfeifer B, Leaf T, Ou S, Kim YS, Cane DE, Licari P, Khosla C (2001) Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol Prog 17(4):612–617CrossRefPubMedGoogle Scholar
  23. Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-coA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136CrossRefPubMedGoogle Scholar
  24. Ma Z, Shentu X, Bian Y, Yu X (2013) Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression. J Basic Microbiol 53(4):348–354CrossRefPubMedGoogle Scholar
  25. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459CrossRefPubMedGoogle Scholar
  26. Roland K, Curtiss R 3rd, Sizemore D (1999) Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis 43(3):429–441CrossRefPubMedGoogle Scholar
  27. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–6619CrossRefPubMedGoogle Scholar
  28. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913CrossRefPubMedGoogle Scholar
  29. Sulzenbacher G, Alvarez K, Van Den Heuvel RH, Versluis C, Spinelli S, Campanacci V, Valencia C, Cambillau C, Eklund H, Tegoni M (2004) Crystal structure of E. coli alcohol dehydrogenase YqhD: evidence of a covalently modified NADP coenzyme. J Mol Biol 342(2):489–502CrossRefPubMedGoogle Scholar
  30. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254(5037):1471–1477CrossRefPubMedGoogle Scholar
  31. Vickers CE, Sabri S (2015) Isoprene. Adv Biochem Eng Biotechnol 148:289–317PubMedGoogle Scholar
  32. Wada K, Toya Y, Banno S, Yoshikawa K, Matsuda F, Shimizu H (2017) 13C-metabolic flux analysis for mevalonate-producing strain of Escherichia coli. J Biosci Bioeng 123(2):177–182CrossRefPubMedGoogle Scholar
  33. Wang Y, San KY, Bennett GN (2013) Cofactor engineering for advancing chemical biotechnology. Curr Opin Biotechnol 24(6):994–999CrossRefPubMedGoogle Scholar
  34. Wang C, Pfleger BF, Kim SW (2017) Reassessing Escherichia coli as a cell factory for biofuel production. Curr Opin Biotechnol 45:92–103CrossRefPubMedGoogle Scholar
  35. Wei Y, Yuan C, Li J, Xu S, Zhou Y, Chen J, Wang Q, Xu L, Qi Y, Zhang Q, Liu Z (2012) Coke formation and carbon atom economy of methanol-to-olefins reaction. ChemSusChem 5(5):906–912CrossRefPubMedGoogle Scholar
  36. Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, BenShoshan EA, Sanford KJ (2010) Development of a gas-phase bioprocess for isoprene monomer production using metabolic pathway engineering. Ind Biotechnol 6(3):152–163CrossRefGoogle Scholar
  37. Xue J, Balamurugan S, Li DW, Liu YH, Zeng H, Wang L, Yang WD, Liu JS, Li HY (2017) Glucose-6-phosphate dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing NADPH supply. Metab Eng 41:212–221CrossRefPubMedGoogle Scholar
  38. Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, Zheng Y, Liu W (2012a) Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS One 7(4):e33509CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, Xian M (2012b) Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour Technol 104:642–647CrossRefPubMedGoogle Scholar
  40. Yang C, Gao X, Jiang Y, Sun B, Gao F, Yang S (2016) Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli. Metab Eng 37:79–91CrossRefPubMedGoogle Scholar
  41. Ye L, Lv X, Yu H (2016) Engineering microbes for isoprene production. Metab Eng 38:125–138CrossRefPubMedGoogle Scholar
  42. Zeng AP, Biebl H (2002) Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol 74:239–259PubMedGoogle Scholar
  43. Zhuge B, Zhang C, Fang H, Zhuge J, Permaul K (2010) Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol. Appl Microbiol Biotechnol 87(6):2177–2184CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations