Skip to main content
Log in

Proteomic-based biomarker discovery for development of next generation diagnostics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the post-genome age, proteomics is receiving significant attention because they provide an invaluable source of biological structures and functions at the protein level. The search for disease-specific biomarkers for diagnostic and/or therapeutic applications is one of the areas that proteomics is having a significant impact. Thus, the identification of a “good” biomarker enables a more accurate early diagnosis and prognosis of disease. Rapid advancements in mass spectrometry (MS) instrumentation, liquid chromatography MS (LCMS), protein microarray technology, and other protein profiling methodologies have a substantial expansion of our toolbox to identify disease-specific protein and peptide biomarkers. This review covers a selection of widely used proteomic technologies for biomarker discovery. In addition, we describe the most commonly used approaches for diagnosis based on proteomic biomarkers and further discuss trends and critical challenges during development of cost-effective rapid diagnostic tests and microfluidic diagnostic systems based on proteomic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdallah C, Dumas-Gaudot E, Renaut J, Sergeant K (2012) Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics 20:1–17

    Article  CAS  Google Scholar 

  • Aebersold R (2003) A mass spectrometric journey into protein and proteome research. J Am Soc Mass Spectrom 14(7):685–695

    Article  CAS  PubMed  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207. doi:10.1038/nature01511

    Article  CAS  PubMed  Google Scholar 

  • Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3(1):36–44. doi:10.1002/pmic.200390006

    Article  CAS  PubMed  Google Scholar 

  • Allred DC, Harvey JM, Berardo M, Clark GM (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11(2):155–168

    CAS  PubMed  Google Scholar 

  • Andersen LP, Espersen F (1992) Immunoglobulin G antibodies to Helicobacter pylori in patients with dyspeptic symptoms investigated by the western immunoblot technique. J Clin Microbiol 30(7):1743–1751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beretov J, Wasinger VC, Graham PH, Millar EK, Kearsley JH, Li Y (2014) Proteomics for breast cancer urine biomarkers. Adv Clin Chem 63:123–167

    Article  CAS  PubMed  Google Scholar 

  • Bertrand E, Faupel M (2007) Subcellular proteomics: from cell deconstruction to system reconstruction. Springer, Dordrecht, London

    Book  Google Scholar 

  • Bhalla S, Tandon S, Satyamoorthy K (2010) Salivary proteins and early childhood caries: a gel electrophoretic analysis. Contemp Clin Dent 1(1):17–22. doi:10.4103/0976-237X.62515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009 doi:10.4061/2009/239204

  • Chen Y, Azman SN, Kerishnan JP, Zain RB, Chen YN, Wong Y-L, Gopinath SC (2014) Identification of host-immune response protein candidates in the sera of human oral squamous cell carcinoma patients

  • Chen Y, Chan CK, Kerishnan JP, Lau YL, Wong Y-L, Gopinath SC (2015) Identification of circulating biomarkers in sera of Plasmodium knowlesi-infected malaria patients—comparison against Plasmodium vivax infection. BMC Infect Dis 15(1):49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Z, Mauk MG, Wang J, Abrams WR, Corstjens PLAM, Niedbala RS, Malamud D, Bau HH (2007) A microfluidic system for saliva-based detection of infectious diseases. Ann N Y Acad Sci 1098:429–436

    Article  CAS  PubMed  Google Scholar 

  • Chenau J, Michelland S, Sidibe J, Seve M (2008) Peptides OFFGEL electrophoresis: a suitable pre-analytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. F Proteome Sci 6:6–9

    Article  CAS  Google Scholar 

  • Cleary MD, Meiering CD, Jan E, Guymon R, Boothroyd JC (2005) Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat Biotechnol 23(2):232–237

    Article  CAS  PubMed  Google Scholar 

  • Corp M (1996) A short guide: developing immunochromatographic test strips. Millipore Bedford, MA

    Google Scholar 

  • Damhorst GL, Murtagh M, Rodriguez WR, Bashir R (2015) Microfluidics and nanotechnology for detection of global infectious diseases. Proc IEEE 103(2):150–160

    Article  CAS  Google Scholar 

  • Das S, Sylvain MR, Fernand VE, Losso JN, El-Zahab B, Warner IM (2011) Positive cooperative mechanistic binding of proteins at low concentrations: a comparison of poly (sodium N-undecanoyl sulfate) and sodium dodecyl sulfate. J Colloid Interface Sci 363(2):585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diez P, Dasilva N, Gonzalez-Gonzalez M, Matarraz S, Casado-Vela J, Orfao A, Fuentes M (2012) Data analysis strategies for protein microarrays. Microarrays (Basel) 1(2):64–83. doi:10.3390/microarrays1020064

    Article  Google Scholar 

  • Egidi E, Sestili F, Janni M, D’Ovidio R, Lafiandra D, Ceriotti A, Vensel WH, Kasarda DD, Masci S (2014) An asparagine residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm. BMC Plant Biol 14(1):64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442(7101):403–411

    Article  CAS  PubMed  Google Scholar 

  • el-Zaatari FA, Oweis SM, Graham DY (1997) Uses and cautions for use of polymerase chain reaction for detection of Helicobacter pylori. Dig Dis Sci 42(10):2116–2119

    Article  CAS  PubMed  Google Scholar 

  • Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eteshola E, Balberg M (2004) Microfluidic ELISA: on-chip flourescence imaging. Biomed Microdevices 6:7–9. doi:10.1023/B:BMMD.0000013360.65653.c2

    Article  CAS  PubMed  Google Scholar 

  • Eteshola E, Leckband D (2001) Development and characterization of an ELISA assay in PDMS microfluidic channels. Sensors Actuators B Chem 72(2):129–133

    Article  CAS  Google Scholar 

  • Feng X, Wen H, Zhang Z, Chen X, Ma X, Zhang J, Qi X, Bradshaw H, Vuitton D, Craig PS (2010) Dot immunogold filtration assay (DIGFA) with multiple native antigens for rapid serodiagnosis of human cystic and alveolar echinococcosis. Acta Trop 113(2):114–120. doi:10.1016/j.actatropica.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Francis G, Stein S (2015) Circulating cell-free tumour DNA in the management of cancer. Int J Mol Sci 16(6):14122–14142. doi:10.3390/ijms160614122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Molloy MP, Chamberlain JS, Andrews PC (2003) Proteomic analysis of mdx skeletal muscle: great reduction of adenylate kinase 1 expression and enzymatic activity. Proteomics 3(10):1895–1903. doi:10.1002/pmic.200300561

    Article  CAS  PubMed  Google Scholar 

  • Gevaert K, Vandekerckhove J (2000) Protein identification methods in proteomics. Electrophoresis 21(6):1145–1154. doi:10.1002/(SICI)1522-2683(20000401)21:6<1145::AID-ELPS1145>3.0

    Article  CAS  PubMed  Google Scholar 

  • Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics 1(2):91–98

    Article  CAS  PubMed  Google Scholar 

  • Glassman MS, Dallal S, Berezin SH, Bostwick HE, Newman LJ, Perez-Perez GI, Blaser MJ (1990) Helicobacter pylori-related gastroduodenal disease in children. Diagnostic utility of enzyme-linked immunosorbent assay. Dig Dis Sci 35(8):993–997

  • Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4(12):3665–3685. doi:10.1002/pmic.200401031

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Aebersold R (1999) Absolute quantitation of 2-D protein spots. Methods Mol Biol 112:417–421

    CAS  PubMed  Google Scholar 

  • Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167

    Article  CAS  PubMed  Google Scholar 

  • Hamdan MH (2006) Cancer biomarkers: analytical techniques for discovery. Wiley & Sons. Inc., Hoboken, New Jersey

    Google Scholar 

  • Han X, Aslanian A, Yates JR 3rd (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12(5):483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller M, Michel PE, Morier P, Crettaz D, Wenz C, Tissot JD, Reymond F, Rossier JS (2005) Two-stage off-gel (TM) isoelectric focusing: protein followed by peptide fractionation and application to proteome analysis of human plasma. Electrophoresis 26(6):1174–1188. doi:10.1002/elps.200410106

    Article  CAS  PubMed  Google Scholar 

  • Hujakka H, Koistinen V, Kuronen I, Eerikainen P, Parviainen M, Lundkvist A, Vaheri A, Vapalahti O, Narvanen A (2003) Diagnostic rapid tests for acute hantavirus infections: specific tests for Hantaan, Dobrava and Puumala viruses versus a hantavirus combination test. J Virol Methods 108(1):117–122

    Article  CAS  PubMed  Google Scholar 

  • ICN2 N (2015) Nanomicrofluidics. Publishing NANO Bioelectric & Biosensor Group. http://www.nanobiosensors.org/research/electrochemical-sensors-based-on-nanostructurated-materials-i-e-carbon-nanotubes-etc-for-environmental-monitoring-and-other-industrial-applications/. May 13 2015

  • Ikeda M, Yamaguchi N, Tani K, Nasu M (2006) Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system. J Microbiol Methods 67:241–247. doi:10.1016/j.mimet.2006.03.014

    Article  CAS  PubMed  Google Scholar 

  • Inagaki N, Katsuta K (2004) Large gel two-dimensional electrophoresis: improving recovery of cellular proteome. Current Proteomics 1:35–39

    Article  CAS  Google Scholar 

  • Jonscher KR, Yates JR 3rd (1997) The quadrupole ion trap mass spectrometer—a small solution to a big challenge. Anal Biochem 244(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, Han J, Ahn CH (2012) A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip 12(21):4257–4262. doi:10.1039/c2lc40585g

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Naghavi KH, Sorouri R, Ranjbar R, Khalilpour A (2008) Use of a MAMA-PCR method to detect GyrA mutations in nalidixic acid resistant clinical isolates of Escherichia coli. Iran J Public Health 37(1):42–47

    CAS  Google Scholar 

  • Karami A, Biramijamal F, Ghanei M, Arjmand S, Eshraghi M, Khalilpoor A (2007) New p53 gene mutation in non-cancerous mustard gas exposed lung. Iranian Journal of Basic Medical Sciences 10(2):111–117

    CAS  Google Scholar 

  • Karami A, Ahmadi Z, Safiri Z, Khalilpour A, Morovati S (2006a) Development of an ultra rapid and simple multiplex polymerase chain reaction technique for detection of Salmonella typhi. Saudi Med J 27(8):1134–1138

  • Karami A, Hindeersson P, Hoiby N, Morovvati S, Khalilpour A (2006b) Linear and circular plasmids in skin and cerebrospinal fluid isolates of Borrelia burgdorferi agent of Lyme disease. Pak J Biol Sci 6(15):2787–2793

    Google Scholar 

  • Khalilpour A (2016) Helicobacter pylori biomarkers for diagnostic kits and vaccines. LAP LAMBERT Academic Publishing

  • Khalilpour A, Kazemzadeh-Narbat M, Tamayol A, Oklu R, Khademhosseini A (2016) Biomarkers and diagnostic tools for detection of Helicobacter pylori. Appl Microbiol Biotechnol 100(11):4723–4734. doi:10.1007/s00253-016-7495-7

    Article  CAS  PubMed  Google Scholar 

  • Khalilpour A, Osman S, Yunus MH, Santhanam A, Vellasamy N, Noordin R (2014a) Helicobacter pylori recombinant UreG protein: cloning, expression, and assessment of its seroreactivity. BMC Res Notes 7:809. doi:10.1186/1756-0500-7-809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalilpour A, Sadjjadi SM, Moghadam ZK, Yunus MH, Zakaria ND, Osman S, Noordin R (2014b) Lateral flow test using Echinococcus granulosus native antigen B and comparison of IgG and IgG4 dipsticks for detection of human cystic echinococcosis. AmJTrop Med Hyg 91(5):994–999. doi:10.4269/ajtmh.14-0170

    Article  CAS  Google Scholar 

  • Khalilpour A, Santhanam A, Wei LC, Saadatnia G, Velusamy N, Osman S, Mohamad AM, Noordin R (2013) Antigenic proteins of Helicobacter pylori of potential diagnostic value. Asian Pac J Cancer Prev 14(3):1635–1642

    Article  PubMed  Google Scholar 

  • Khalilpour A, Santhanam A, Wei LC, Mohamad AM, Osman S, Noordin R (2012) Helicobacter pylori proteins with diagnostic potential identified using proteomic approach. Int J Infect Dis 16(Supplement 1):e396–e397

    Article  Google Scholar 

  • Klose J, Kobalz U (1995) Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 16(6):1034–1059

    Article  CAS  PubMed  Google Scholar 

  • Knowles MR, Cervino S, Skynner HA, Hunt SP, de Felipe C, Salim K, Meneses-Lorente G, McAllister G, Guest PC (2003) Multiplex proteomic analysis by two-dimensional differential in-gel electrophoresis. Proteomics 3(7):1162–1171. doi:10.1002/pmic.200300437

    Article  CAS  PubMed  Google Scholar 

  • Krijgsveld J (2012) Proteiomics of biological systems: protein phosphorylation using mass spectrometry techniques. By Bryan M. Ham. Wiley Online Library

  • Kulasingam V, Diamandis EP (2008) Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat Clin Pract Oncol 5(10):588–599. doi:10.1038/ncponc1187

    Article  CAS  PubMed  Google Scholar 

  • Lai S, Wang S, Luo J, Lee LJ, Yang ST, Madou MJ (2004) Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal Chem 76:1832–1837. doi:10.1021/ac0348322

    Article  CAS  PubMed  Google Scholar 

  • Lee WG, Kim Y-G, Chung BG, Demirci U, Khademhosseini A (2010a) Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62:449–457. doi:10.1016/j.addr.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  • Lee WG, Kim YG, Chung BG, Demirci U, Khademhosseini A (2010b) Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62(4–5):449–457. doi:10.1016/j.addr.2009.11.016

    Article  CAS  PubMed  Google Scholar 

  • Lee Y-F, Lien K-Y, Lei H-Y, Lee G-B (2009) An integrated microfluidic system for rapid diagnosis of dengue virus infection. Biosensors & Bioelectronics 25:745–752. doi:10.1016/j.bios.2009.08.020

    Article  CAS  Google Scholar 

  • Link AJ, Hays LG, Carmack EB, Yates JR 3rd (1997) Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis 18(8):1314–1334. doi:10.1002/elps.1150180808

    Article  CAS  PubMed  Google Scholar 

  • Lion N, Rohner TC, Dayon L, Arnaud IL, Damoc E, Youhnovski N, Wu ZY, Roussel C, Josserand J, Jensen H, Rossier JS, Przybylski M, Girault HH (2003) Microfluidic systems in proteomics. Electrophoresis 24(21):3533–3562. doi:10.1002/elps.200305629

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang H, Huang J, Yang J, Liu B, Yang P (2009) Microchip-based ELISA strategy for the detection of low-level disease biomarker in serum. Anal Chim Acta 650:77–82. doi:10.1016/j.aca.2009.06.048

    Article  CAS  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000a) Purifying, detecting, and characterizing proteins

  • Lodish HF, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000b) Molecular cell biology, 4th edn. Citeseer, NY

    Google Scholar 

  • Macfarlane DE (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride-sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal Biochem 176(2):457–463

    Article  CAS  PubMed  Google Scholar 

  • Madu CO, Lu Y (2010) Novel diagnostic biomarkers for prostate cancer. J Cancer 1:150

    Article  PubMed  PubMed Central  Google Scholar 

  • Maghsoudi N, Khalilpour A, Kamali M, Zeinoddini M (2007) Cloning and expression of coxsakievirus B3 viral protein-1 in E. coli. Iran Biomed J 11(3):147–152

    CAS  PubMed  Google Scholar 

  • Mairhofer J, Roppert K, Ertl P (2009) Microfluidic systems for pathogen sensing: a review. Sensors (Basel) 9(6):4804–4823. doi:10.3390/s90604804

    Article  CAS  Google Scholar 

  • Mamuti W, Yamasaki H, Sako Y, Nakaya K, Nakao M, Lightowlers MW, Ito A (2002) Usefulness of hydatid cyst fluid of Echinococcus granulosus developed in mice with secondary infection for serodiagnosis of cystic Echinococcosis in humans. Clin Diagn Lab Immunol 9(3):573–576

    PubMed  PubMed Central  Google Scholar 

  • Manes G, Zanetti MV, Piccirillo MM, Lombardi G, Balzano A, Pieramico O (2005) Accuracy of a new monoclonal stool antigen test in post-eradication assessment of Helicobacter pylori infection: comparison with the polyclonal stool antigen test and urea breath test. Dig Liver Dis 37(10):751–755

    Article  CAS  PubMed  Google Scholar 

  • Marzese DM, Hirose H, Hoon DS (2013) Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev Mol Diagn 13(8):827–844. doi:10.1586/14737159.2013.845088

    Article  CAS  PubMed  Google Scholar 

  • Matthiesen R (2007) Mass spectrometry data analysis in proteomics Humana press Totowa. Jersey, New

    Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499. doi:10.1021/ar010110q

    Article  CAS  PubMed  Google Scholar 

  • Messina GA, Panini NV, Martinez NA, Raba J (2008) Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples. Anal Biochem 380:262–267. doi:10.1016/j.ab.2008.05.055

    Article  CAS  PubMed  Google Scholar 

  • Michael Hamacher KM, Stühler K, Dipl.-Oec. André van Hall, Warscheid B, Meyer HE (2006) Proteomics in Drug Research

  • Michel PE, Reymond F, Arnaud IL, Josserand J, Girault HH, Rossier JS (2003) Protein fractionation in a multicompartment device using off-gel (TM) isoelectric focusing. Electrophoresis 24(1–2):3–11

    Article  CAS  PubMed  Google Scholar 

  • Miwa H, Akamatsu S, Tachikawa T, Sogabe T, Ohtaka K, Nagahara A, Sugiyama Y, Sato N (2001) On-site diagnosis of H. pylori infection by urine. Diagn Microbiol Infect Dis 39(2):95–97

    Article  CAS  PubMed  Google Scholar 

  • Moghadam ZK, Ghaffarifar F, Khalilpour A, Abdul Aziz F, Saadatnia G, Noordin R (2013) IgG4 detection of Echinococcus granulosus paramyosin is a useful diagnostic test for human hydatidosis. Clin Vaccine Immunol 20(4):501–505. doi:10.1128/CVI.00019-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy MP, Herbert BR, Slade MB, Rabilloud T, Nouwens AS, Williams KL, Gooley AA (2000) Proteomic analysis of the Escherichia coli outer membrane. Eur J Biochem 267(10):2871–2881

    Article  CAS  PubMed  Google Scholar 

  • Molloy MP, Herbert BR, Walsh BJ, Tyler MI, Traini M, Sanchez JC, Hochstrasser DF, Williams KL, Gooley AA (1998) Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis 19(5):837–844. doi:10.1002/elps.1150190539

    Article  CAS  PubMed  Google Scholar 

  • Moore C (2009) Introduction to western blotting. AbD serotec

  • Morand JP, Macri J, Adeli K (2005) Proteomic profiling of hepatic endoplasmic reticulum-associated proteins in an animal model of insulin resistance and metabolic dyslipidemia. J Biol Chem 280(18):17626–17633

    Article  CAS  PubMed  Google Scholar 

  • Moreda-Pineiro A, Garcia-Otero N, Bermejo-Barrera P (2014) A review on preparative and semi-preparative offgel electrophoresis for multidimensional protein/peptide assessment. Anal Chim Acta 836:1–17. doi:10.1016/j.aca.2014.04.053

    Article  CAS  PubMed  Google Scholar 

  • Ng AH, Uddayasankar U, Wheeler AR (2010) Immunoassays in microfluidic systems. Anal Bioanal Chem 397(3):991–1007. doi:10.1007/s00216-010-3678-8

    Article  CAS  PubMed  Google Scholar 

  • Nooradin R, Santhanam A, Khalilpour A, Lee CW, Osman S (2013) Helicobacter pylori proteins for diagnostic kit and vaccine

  • Novo P, França Prazeres DM, Chu V, Conde JP (2011) Microspot-based ELISA in microfluidics: chemiluminescence and colorimetry detection using integrated thin-film hydrogenated amorphous silicon photodiodes. Lab Chip 11:4063

    Article  CAS  PubMed  Google Scholar 

  • Olut AI, Erguven S, Emri S, Ozunlu H, Akay H (2005) Diagnostic value of a dot immunobinding assay for human pulmonary hydatidosis. Korean J Parasitol 43(1):15–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797. doi:10.1021/pr800538n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas MG, Schantz PM, Cannon LT Sr, Wahlquist SP (1986) Dot-ELISA for the rapid serodiagnosis of human hydatid disease. Diagn Immunol 4(6):271–276

    CAS  PubMed  Google Scholar 

  • Parsa H, Chin CD, Mongkolwisetwara P, Lee BW, Wang JJ, Sia SK (2008) Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8(12):2062–2070. doi:10.1039/b813350f

    Article  CAS  PubMed  Google Scholar 

  • Pelerito A, Oleastro M, Lopes AI, Ramalho P, Cabral J, Monteiro L (2006) Evaluation of rapid test assure helicobacter pylori for diagnosis of H. pylori in pediatric population. J Microbiol Methods 66(2):331–335

    Article  PubMed  Google Scholar 

  • Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteome 74(10):1829–1841. doi:10.1016/j.jprot.2011.05.040

    Article  CAS  Google Scholar 

  • Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28(5):816–843

    Article  CAS  PubMed  Google Scholar 

  • Reisdorph NA, Reisdorph R, Bowler R, Broccardo C (2009) Proteomics methods and applications for the practicing clinician. Ann Allergy Asthma Immunol 102(6):523–529

    Article  CAS  PubMed  Google Scholar 

  • Riazi M, Zainul FZ, Bahaman AR, Amran F, Khalilpour A (2014) Role of 72 kDa protein of Leptospira interrogans as a diagnostic marker in acute leptospirosis. Indian J Med Res 139(2):308–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ros A, Faupel M, Mees H, Oostrum J, Ferrigno R, Reymond F, Michel P, Rossier JS, Girault HH (2002) Protein purification by off-gel electrophoresis. Proteomics 2(2)

  • Saadatnia G, Ghaffarifar F, Khalilpour A, Amerizadeh A, Rahmah N (2011) A Toxoplasma gondii 10 kDa in vitro excretory secretory antigen reactive with human IgM and IgA antibodies. Trop Biomed 28(3):606–614

    CAS  PubMed  Google Scholar 

  • Saidin S, Yunus MH, Zakaria ND, Razak KA, Huat LB, Othman N, Noordin R (2014) Production of recombinant Entamoeba histolytica pyruvate phosphate dikinase and its application in a lateral flow dipstick test for amoebic liver abscess. BMC Infect Dis 14:182. doi:10.1186/1471-2334-14-182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasidharan S, Uyub AM (2009) Antibody response to Helicobacter pylori excretory antigen and the cross reaction study. J Immunoassay Immunochem 30(1):70–81

    Article  CAS  PubMed  Google Scholar 

  • Seillier-Moiseiwitsch F, Trost DC, Moiseiwitsch J (2002) Statistical methods for proteomics. Methods Mol Biol 184:51–80

    CAS  PubMed  Google Scholar 

  • Shirran SL, Botting CH (2010) A comparison of the accuracy of iTRAQ quantification by nLC-ESI MSMS and nLC-MALDI MSMS methods. J Proteome 73(7):1391–1403

    Article  CAS  Google Scholar 

  • Simor AE, Lin E, Saibil F, Cohen L, Louie M, Pearen S, Donhoffer HA (1996) Evaluation of enzyme immunoassay for detection of salivary antibody to Helicobacter pylori. J Clin Microbiol 34(3):550–553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spengler B (1997) Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom 32:1019–1036

    Article  CAS  Google Scholar 

  • Stokes D, Griffin GD, Vo-Dinh T (2001a) Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius J Anal Chem 369(3–4):295–301

    Article  CAS  PubMed  Google Scholar 

  • Stokes DL, Griffin GD, Vo-Dinh T (2001b) Detection of E. coli using a microfluidics-based antibody biochip detection system. Fresenius J Anal Chem 369:295–301. doi:10.1007/s002160000660

    Article  CAS  PubMed  Google Scholar 

  • Tanca A, Palomba A, Deligios M, Cubeddu T, Fraumene C, Biosa G, Pagnozzi D, Addis MF, Uzzau S (2013) Evaluating the impact of different sequence databases on metaproteome analysis: insights from a lab-assembled microbial mixture. PLoS One 8(12):e82981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tao SC, Chen CS, Zhu H (2007) Applications of protein microarray technology. Comb Chem High Throughput Screen 10(8):706–718

    Article  CAS  PubMed  Google Scholar 

  • Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73:2594–2604

    Article  CAS  PubMed  Google Scholar 

  • Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1(3):377–396. doi:10.1002/1615-9861(200103)1:3<377::AID-PROT377>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  • Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  • Van Hoof D, Heck AJ, Krijgsveld J, Mummery CL (2008) Proteomics and human embryonic stem cells. Stem Cell Res 1(3):169–182. doi:10.1016/j.scr.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  • Veenstra, D T, Smith RD (2003) Proteome characterization and proteomics

  • Viswanathan S, Unlu M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1(3):1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Weiss LM, Kim K (2011) Toxoplasma gondii: the model apicomplexan. Perspectives and methods. Academic Press

  • Wessling B (1996) Wessling, conductive polymer/solvent systems: solutions or dispersions?, University of Wisconsin-Madison: making and conjugating colloidal metals

  • Xiang Q, Hu G, Gao Y, Li D (2006) Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron 21(10):2006–2009

    Article  CAS  PubMed  Google Scholar 

  • Yakovleva J, Davidsson R, Lobanova A, Bengtsson M, Eremin S, Laurell T, Emneus J (2002) Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem 74(13):2994–3004

    Article  CAS  PubMed  Google Scholar 

  • Yates J (2016) MudPIT (Multidimensional Protein Identification Technology). Publishing IMAT program. https://imat.cancer.gov/about/outputs/tech/mudpit.asp. 20 Nov 2016

  • Yates JR 3rd, Link AJ, Schieltz D (2000) Direct analysis of proteins in mixtures. Application to protein complexes. Methods Mol Biol 146:17–26. doi:10.1385/1-59259-045-4:17

    CAS  PubMed  Google Scholar 

  • Yates JR 3rd, McCormack AL, Link AJ, Schieltz D, Eng J, Hays L (1996) Future prospects for the analysis of complex biological systems using micro-column liquid chromatography-electrospray tandem mass spectrometry. Analyst 121(7):65R–76R

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Fan Y-X, Yang Y, Liu D-L, Wu K, Wen F-B, Zhang C-Y, Zhu D-Y, Zhao S (2015) Identification of potential plasma biomarkers for esophageal squamous cell carcinoma by a proteomic method. International Journal of Clinical and Experimental Pathology 8(2):1535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Khodakov DA, Ellis AV, Voelcker NH (2012) Surface modification for PDMS-based microfluidic devices. Electrophoresis 33:89–104

    Article  PubMed  CAS  Google Scholar 

  • Zuniga-Noriega JR, Bosques-Padilla FJ, Perez-Perez GI, Tijerina-Menchaca R, Flores-Gutierrez JP, Maldonado Garza HJ, Garza-Gonzalez E (2006) Diagnostic utility of invasive tests and serology for the diagnosis of Helicobacter pylori infection in different clinical presentations. Arch Med Res 37(1):123–128

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Ali Khademhosseini and Dr. Ali Tamayol from Harvard Medical School for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Khalilpour.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilpour, A., Kilic, T., Khalilpour, S. et al. Proteomic-based biomarker discovery for development of next generation diagnostics. Appl Microbiol Biotechnol 101, 475–491 (2017). https://doi.org/10.1007/s00253-016-8029-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8029-z

Keywords

Navigation