Advertisement

Applied Microbiology and Biotechnology

, Volume 99, Issue 1, pp 97–107 | Cite as

Modeling the effects of biomass accumulation on the performance of a biotrickling filter packed with PUF support for the alkaline biotreatment of dimethyl disulfide vapors in air

  • Luis Arellano-García
  • Antonio D. Dorado
  • Axayacatl Morales-Guadarrama
  • Emilio Sacristan
  • Xavier Gamisans
  • Sergio RevahEmail author
Environmental biotechnology

Abstract

Excess biomass buildup in biotrickling filters leads to low performance. The effect of biomass accumulation in a biotrickling filter (BTF) packed with polyurethane foam (PUF) was assessed in terms of hydrodynamics and void space availability in a system treating dimethyl disulfide (DMDS) vapors with an alkaliphilic consortium. A sample of colonized support from a BTF having been operating for over a year was analyzed, and it was found that the BTF void bed fraction was reduced to almost half of that calculated initially without biomass. Liquid flow through the examined BTF yielded dispersion coefficient values of 0.30 and 0.72 m2 h−1, for clean or colonized PUF, respectively. 3D images of attached biomass obtained with magnetic resonance imaging allowed to calculate the superficial area and the biofilm volume percentage and depth as 650 m2 m−3, 35 %, and 0.6 mm respectively. A simplified geometric approximation of the complex PUF structure was proposed using an orthogonal 3D mesh that predicted 600 m2 m−3 for the same biomass content. With this simplified model, it is suggested that the optimum biomass content would be around 20 % of bed volume. The activity of the microorganisms was evaluated by respirometry and the kinetics represented with a Haldane equation type. Experimentally determined parameters were used in a mathematical model to simulate the DMDS elimination capacity (EC), and better description was found when the removal experimental data were matched with a model including liquid axial dispersion in contrast to an ideal plug flow model.

Keywords

Biotrickling filter Magnetic resonance imaging Biofilm Modeling Dimethyl disulfide Liquid dispersion 

Notes

Acknowledgements

The authors would like to thank Conacyt for financing this project (I0017-166451) and the scholarship of LAG. To AECID for granting the funds for LAG internship in the UPC-Barcelona through project A2/037075/11. And to Rafael Lara and the Ci3M center for MRI analysis.

Supplementary material

253_2014_5929_MOESM1_ESM.pdf (7 kb)
ESM 1 (PDF 6 kb)
ESM 2

(MPG 46008 kb)

References

  1. Alonso C, Suidan MT, Sorial GA, Smith FL (1996) Gas treatment in trickle-bed biofilters: Biomass, how much is enough? Biotechnol Bioeng 54(6):583–594CrossRefGoogle Scholar
  2. Alonso C, Suidan MT, Kim BR, Kim BJ (1998) Dynamic mathematical model for the biodegradation of VOCs in a biofilter: Biomass accumulation study. Environ Sci Technol 32:3118–3123CrossRefGoogle Scholar
  3. Arellano-García L, González-Sánchez A, Van Langenhove H, Kumar A, Revah S (2012) Removal of odorant dimethyl disulfide under alkaline and neutral conditions in biotrickling filters. Water Sci and Technol 66(8):1641–1646CrossRefGoogle Scholar
  4. Bonilla WC (2013) Uso de respirometrías heterogéneas para estimar coeficientes de transferencia de masa interfaciales y parámetros biocinéticos en biofiltros de lecho escurrido. Dissertation, UAM Iztapalapa, MexicoGoogle Scholar
  5. De Beer D, Stoodley P (2006) Microbial biofilms. In: Dwarkin E, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, 3rd edn. Springer, New York, pp 904–937CrossRefGoogle Scholar
  6. Delgado JMPQ (2006) A critical review of dispersion in packed beds. Heat Mass Transfer 42(4):279–310CrossRefGoogle Scholar
  7. Deshusses MA, Cox HHJ, Miller DW (1998) The use of CAT scanning to characterize bioreactors for waste air treatment. Paper 98-TA20B.04. In: Proceedings Annual Meeting and Exhibition of the Air and Waste Management Association, San Diego, CA, USAGoogle Scholar
  8. Dorado AD, Lafuente J, Gabriel D, Gamisans X (2012) Biomass accumulation in a biofilter treating toluene at high loads. Part 2: Model development, calibration and validation. Chem Eng J 209:Google Scholar
  9. Estrada JM, Kraakman NJR, Lebrero R, Munoz R (2012) A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnol Adv 30:1354–1363PubMedCrossRefGoogle Scholar
  10. Gianetto A, Specchia V (1992) Trickle-bed reactors: State of art and perspectives. Chem Eng Sci 47(13):3197–3213CrossRefGoogle Scholar
  11. González-Sánchez A, Revah S, Deshusses MA (2008) Alkaline biofiltration of H2S odors. Environ Sci Technol 42:7398–7404PubMedCrossRefGoogle Scholar
  12. Granada C, Revah S, Le Borgne S (2009) Diversity of culturable bacteria in an alkaliphilic sulfur-oxidizing microbial consortium. Adv Mat Res 71:137–140CrossRefGoogle Scholar
  13. Herskowitz M, Smith JM (1983) Trickle bed reactors: a review. AICHE J 29(1):1–18CrossRefGoogle Scholar
  14. Iliuta I, Bildea SC, Iliuta MC, Larachi F (2002) Analysis of trickle bed and packed bubble column bioreactors for combined carbon oxidation and nitrification. Braz J Chem Eng 19(1):69–88CrossRefGoogle Scholar
  15. Integrated Computer Aided System (ICAS), Educational Version. Computer Aided Process Engineering Center. Technical University of DenmarkGoogle Scholar
  16. Jiménez B, Noyola A, Capdeville B (1988) Selected dyes for residence time distribution evaluation in bioreactors. Biotechnol Tech 2(2):77–82CrossRefGoogle Scholar
  17. Kim S, Deshusses MA (2003) Development and experimental validation of a conceptual model for biotrickling filtration of H2S. Environ Prog 22(2):119–128CrossRefGoogle Scholar
  18. Kim S, Deshusses MA (2005) Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter. Chem Eng J 113(2):119–126CrossRefGoogle Scholar
  19. Levenspiel O (1998) Chemical reaction engineering. John Wiley & Sons, New YorkGoogle Scholar
  20. Lewandowski Z, Stoodley P, Altobelli S (1995) Experimental and conceptual studies on mass transport in biofilms. Wat Sci Tech 31(1):153–162CrossRefGoogle Scholar
  21. Neu TR, Manz B, Volke F, Dynes JJ, Hitchcock AP, Lawrence JR (2010) Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol Ecol 72(1):1–21PubMedCrossRefGoogle Scholar
  22. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68(4):355–369PubMedCrossRefGoogle Scholar
  23. Ramírez M, Fernández M, Granada C, Le Borgne S, Gómez JM, Cantero D (2011) Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresource Technol 102:4047–4053CrossRefGoogle Scholar
  24. Sharvelle S, McLamore E, Banks MK (2008a) Hydrodynamic characteristics in biotrickling filters as affected by packing material and hydraulic loading rate. J Environ Eng-ASCE 134:346–352CrossRefGoogle Scholar
  25. Sharvelle S, Arabi M, McLamore E, Banks MK (2008b) Model development for biotrickling filter treatment of graywater stimulant and waste gas. I J Environ Eng-ASCE 134:813–825CrossRefGoogle Scholar
  26. Silva J, Morales M, Cáceres M, Morales P, Aroca G (2012) Modelling of the biofiltration of reduced sulphur compounds through biotrickling filters connected in series: Effect of H2S. Electron J Biotechn 15(3):1–15Google Scholar
  27. Smet E, Van Langenhove H (1998) Abatement of volatile organic sulfur compounds in odorous emissions from the bio-industry. Biodegradation 9:273–284PubMedCrossRefGoogle Scholar
  28. Smith N, Kelly DP (1988) Isolation and physiological characterization of autotrophic sulphur bacteria oxidizing dimethyl disulphide as sole source of energy. J Gen Microbiol 134:1407–1417Google Scholar
  29. Standard Methods for the Examination of Water and Wastewater (1998) 20th edn, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USAGoogle Scholar
  30. Trejo-Aguilar G, Revah S, Lobo R (2005) Hydrodynamic characterization of a trickle bed air biofilter. Chem Eng J 113:145–152CrossRefGoogle Scholar
  31. Wan S, Li G, An T, Guo B (2011) Co-treatment of single, binary and ternary mixture gas of ethanethiol, dimethyl disulfide and thioanisole in a biotrickling filter seeded with Lysinibacillus sphaericus RG-1. J Hazard Mater 186:1050–1057PubMedCrossRefGoogle Scholar
  32. Zarook SM, Shaikh AA, Azam SM (1998) Axial dispersion in biofilters. Biochem Eng J 1(1):77–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Luis Arellano-García
    • 1
  • Antonio D. Dorado
    • 2
  • Axayacatl Morales-Guadarrama
    • 3
    • 4
  • Emilio Sacristan
    • 3
    • 4
  • Xavier Gamisans
    • 2
  • Sergio Revah
    • 5
    Email author
  1. 1.Departamento de Ingeniería de Procesos e HidráulicaUAM IztapalapaMexico CityMexico
  2. 2.Departamento de Ingeniería Minera y Recursos NaturalesUPCBarcelonaSpain
  3. 3.Departamento de Ingeniería EléctricaUAM IztapalapaMexico CityMexico
  4. 4.Centro Nacional de Investigación en Imagenología e Instrumentación MédicaUAM IztapalapaMexico CityMexico
  5. 5.Departamento de Procesos y TecnologíaUAM CuajimalpaMexico CityMexico

Personalised recommendations