Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Exploration of sulfur metabolism in the yeast Kluyveromyces lactis


Hemiascomycetes are separated by considerable evolutionary distances and, as a consequence, the mechanisms involved in sulfur metabolism in the extensively studied yeast, Saccharomyces cerevisiae, could be different from those of other species of the phylum. This is the first time that a global view of sulfur metabolism is reported in the biotechnological yeast Kluyveromyces lactis. We used combined approaches based on transcriptome analysis, metabolome profiling, and analysis of volatile sulfur compounds (VSCs). A comparison between high and low sulfur source supplies, i.e., sulfate, methionine, or cystine, was carried out in order to identify key steps in the biosynthetic and catabolic pathways of the sulfur metabolism. We found that sulfur metabolism of K. lactis is mainly modulated by methionine. Furthermore, since sulfur assimilation is highly regulated, genes coding for numerous transporters, key enzymes involved in sulfate assimilation and the interconversion of cysteine to methionine pathways are repressed under conditions of high sulfur supply. Consequently, as highlighted by metabolomic results, intracellular pools of homocysteine and cysteine are maintained at very low concentrations, while the cystathionine pool is highly expandable. Moreover, our results suggest a new catabolic pathway for methionine to VSCs in this yeast: methionine is transaminated by the ARO8 gene product into 4-methylthio-oxobutyric acid (KMBA), which could be exported outside of the cell by the transporter encoded by PDR12 and demethiolated by a spontaneous reaction into methanethiol and its derivatives.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Aranda A, Jimenez-Marti E, Orozco H, Matallana E, del Olmo M (2006) Sulfur and adenine metabolisms are linked, and both modulate sulfite resistance in wine yeast. J Agric Food Chem 54:5839–5846

  2. Arfi K, Amárita F, Spinnler HE, Bonnarme P (2003) Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem. J Biotechnol 105:245–253

  3. Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct l-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol 72:2155–2162. doi:

  4. Avram D, Bakalinsky AT (1997) SSU1 encodes a plasma membrane protein with a central role in a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae. J Bacteriol 179:5971–5974

  5. Boer VM, de Winde JH, Pronk JT, Piper MDW (2003) The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274. doi:

  6. Bonnarme P, Amarita F, Chambellon E, Semon E, Spinnler HE, Yvon M (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from l-methionine by Lactococcus lactis. FEMS Microbiol Lett 236:85–90. doi:

  7. Chan SY, Appling DR (2003) Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae. J Biol Chem 278:43051–43059. doi:

  8. Cholet O, Hénaut A, Casaregola S, Bonnarme P (2007) Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of l-methionine, lactate, and lactose. Appl Environ Microbiol 73:2561–2570. doi:

  9. Cholet O, Hénaut A, Hébert A, Bonnarme P (2008) Transcriptional analysis of l-methionine catabolism in the cheese-ripening yeast Yarrowia lipolytica in relation to volatile sulfur compound biosynthesis. Appl Environ Microbiol 74:3356–3367. doi:

  10. Cordente AG, Heinrich A, Pretorius IS, Swiegers JH (2009) Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9:446–459. doi:

  11. del Castillo L, Lozano M, Tâche R, Bonnarme P, Landaud S (2007) Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: the first step towards l-cysteine catabolism. J Microbiol Methods 69:70–77. doi:

  12. Delmar P, Robin S, Daudin JJ (2005) VarMixt: efficient variance modelling for the differential analysis of replicated gene expression data. Bioinformatics 21:502–508. doi:

  13. Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet 22:375–387. doi:

  14. Fauchon M, Lagniel G, Aude JC, Lombardia L, Soularue P, Petat C, Marguerie G, Sentenac A, Werner M, Labarre J (2002) Sulfur sparing in the yeast proteome in response to sulfur demand. Mol Cell 9:713–723

  15. Fontecave M, Atta M, Mulliez E (2004) S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci 29:243–249. doi:

  16. Forquin M, Duvergey H, Proux C, Loux V, Mounier J, Landaud S, Coppée J, Gibrat J, Bonnarme P, Martin-Verstraete I, Vallaeys T (2009) Identification of brevibacteriaceae by multilocus sequence typing and comparative genomic hybridization analyses. Appl Environ Microbiol 75:6406–6409. doi:

  17. Forquin M, Hébert A, Roux A, Aubert J, Proux C, Heilier J, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I (2011) Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Appl Environ Microbiol 77:1449–1459. doi:

  18. Ganguli D, Kumar C, Bachhawat AK (2007) The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 175:1137–1151. doi:

  19. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, André B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086

  20. Hansen J, Johannesen PF (2000) Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet 263:535–542

  21. Hazelwood LA, Tai SL, Boer VM, de Winde JH, Pronk JT, Daran JM (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6:937–945. doi:

  22. Hébert A, Casaregola S, Beckerich J (2011) Biodiversity in the sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res. doi:

  23. Hellborg L, Woolfit M, Arthursson-Hellborg M, Piskur J (2008) Complex evolution of the DAL5 transporter family. BMC Genomics 9:164. doi:

  24. Hogan DA, Auchtung TA, Hausinger RP (1999) Cloning and characterization of a sulfonate/alpha-ketoglutarate dioxygenase from Saccharomyces cerevisiae. J Bacteriol 181:5876–5879

  25. Jacquemin-Faure I, Thomas D, Laporte J, Cibert C, Surdin-Kerjan Y (1994) The vacuolar compartment is required for sulfur amino acid homeostasis in Saccharomyces cerevisiae. Mol Gen Genet 244:519–529

  26. Kagkli DM, Bonnarme P, Neuvéglise C, Cogan TM, Casaregola S (2006a) l-methionine degradation pathway in Kluyveromyces lactis: identification and functional analysis of the genes encoding l-methionine aminotransferase. Appl Environ Microbiol 72:3330–3335. doi:

  27. Kagkli DM, Tâche R, Cogan TM, Hill C, Casaregola S, Bonnarme P (2006b) Kluyveromyces lactis and Saccharomyces cerevisiae, two potent deacidifying and volatile-sulphur-aroma-producing microorganisms of the cheese ecosystem. Appl Microbiol Biotechnol 73:434–442. doi:

  28. Kaur J, Bachhawat AK (2007) Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics 176:877–890. doi:

  29. Kaur H, Kumar C, Junot C, Toledano MB, Bachhawat AK (2009) Dug1p is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem 284:14493–14502. doi:

  30. Knijnenburg TA, Daran JMG, van den Broek MA, Daran-Lapujade PA, de Winde JH, Pronk JT, Reinders MJT, Wessels LFA (2009) Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data. BMC Genomics 10:53. doi:

  31. Landaud S, Helinck S, Bonnarme P (2008) Formation of volatile sulfur compounds and metabolism of methionine and other sulfur compounds in fermented food. Appl Microbiol Biotechnol 77:1191–1205. doi:

  32. Luikenhuis S, Perrone G, Dawes IW, Grant CM (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol Biol Cell 9:1081–1091

  33. Mansour S, Beckerich JM, Bonnarme P (2008) Lactate and amino acid catabolism in the cheese-ripening yeast Yarrowia lipolytica. Appl Environ Microbiol 74:6505–6512. doi:

  34. Masselot M, Surdin-Kerjan Y (1977) Methionine biosynthesis in Saccharomyces cerevisiae II. Gene–enzyme relationships in the sulfate assimilation pathway. Mol Gen Genet 154:23–30

  35. Patton EE, Peyraud C, Rouillon A, Surdin-Kerjan Y, Tyers M, Thomas D (2000) SCF(Met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J 19:1613–1624. doi:

  36. Peng Z, Verma DP (1995) A rice HAL2-like gene encodes a Ca(2+)-sensitive 3'(2'),5'-diphosphonucleoside 3'(2')-phosphohydrolase and complements yeast met22 and Escherichia coli cysQ mutations. J Biol Chem 270:29105–29110

  37. Reymond N, Charles H, Duret L, Calevro F, Beslon G, Fayard JM (2004) ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics 20:271–273

  38. Samanta MP, Liang S (2003) Predicting protein functions from redundancies in large-scale protein interaction networks. Proc Natl Acad Sci USA 100:12579–12583. doi:

  39. Schaffrath R, Breunig KD (2000) Genetics and molecular physiology of the yeast Kluyveromyces lactis. Fungal Genet Biol 30:173–190. doi:

  40. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787. doi:

  41. Suh JK, Poulsen LL, Ziegler DM, Robertus JD (1999) Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum. Proc Natl Acad Sci USA 96:2687–2691

  42. Suleau A, Gourdon P, Reitz-Ausseur J, Casaregola S (2006) Transcriptomic analysis of extensive changes in metabolic regulation in Kluyveromyces lactis strains. Eukaryot Cell 5:1360–1370. doi:

  43. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

  44. Thomas D, Barbey R, Surdin-Kerjan Y (1990) Gene–enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. Study of the 3'-phosphoadenylylsulfate reductase structural gene. J Biol Chem 265:15518–15524

  45. Thomas D, Barbey R, Henry D, Surdin-Kerjan Y (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138:2021–2028

  46. Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30:35–43. doi:

  47. Uria-Nickelsen MR, Leadbetter ER, Godchaux W (1993) Sulfonate-sulfur assimilation by yeasts resembles that of bacteria. FEMS Microbiol Lett 114:73–77

  48. Wheeler GL, Quinn KA, Perrone G, Dawes IW, Grant CM (2002) Glutathione regulates the expression of gamma-glutamylcysteine synthetase via the Met4 transcription factor. Mol Microbiol 46:545–556

  49. Wheeler GL, Trotter EW, Dawes IW, Grant CM (2003) Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem 278:49920–49928. doi:

  50. Wood AF, Aston JW, Douglas GK (1985) The determination of free aminoacids in cheese by capillary column gas liquid chromatography. Aust J Dairy Technol 40:166–169

  51. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15

  52. Zhang N, Merlotti C, Wu J, Ismail T, El-Moghazy AN, Khan SA, Butt A, Gardner DC, Sims PF, Oliver SG (2001) Functional analysis of six novel ORFs on the left arm of Chromosome XII of Saccharomyces cerevisiae reveals three of them responding to S-starvation. Yeast 18:325–334. doi:<325::AID-YEA669>3.0.CO;2-K

Download references


This work was supported by the EcoMet program (ANR-06-PNRA-014) funded by the French National Research Agency (ANR). AH and MPF are grateful to the ANR (French National Research Agency: <>) for a PhD scholarship. We would also like to thank Armelle Delile, Roselyne Tâche, and Emmanuelle Rebours for their helpful technical assistance.

Author information

Correspondence to Sophie Landaud.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PDF 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hébert, A., Forquin-Gomez, M., Roux, A. et al. Exploration of sulfur metabolism in the yeast Kluyveromyces lactis . Appl Microbiol Biotechnol 91, 1409–1423 (2011).

Download citation


  • Sulfur metabolism
  • Volatile sulfur compounds
  • Transcriptome
  • Metabolome
  • Kluyveromyces lactis