Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding

  • 855 Accesses

  • 48 Citations

Abstract

Thermophilic dry anaerobic digestion of sludge for cellulose methanization was acclimated at 53 °C for nearly 5 years using a waste paper-based medium. The stability of the microbial community structure and the microbial community responsible for the cellulose methanization were studied by 16S rRNA gene-based clone library analysis. The microbial community structure remained stable during the long-term acclimation period. Hydrogenotrophic methanogens dominated in methanogens and Methanothermobacter, Methanobacterium, Methanoculleus, and Methanosarcina were responsible for the methane production. Bacteria showed relatively high diversity and distributed mainly in the phyla Firmicutes, Bacteroidetes, and Synergistetes. Ninety percent of operational taxonomic units (OTUs) were affiliated with the phylum Firmicutes, indicating the crucial roles of this phylum in the digestion. Relatives of Clostridium stercorarium, Clostridium thermocellum, and Halocella cellulosilytica were dominant cellulose degraders. The acclimated stable sludge was used to treat garbage stillage discharged from a fuel ethanol production process, and the shift of microbial communities with the change of feed was analyzed. Both archaeal and bacterial communities had obviously changed: Methanoculleus spp. and Methanothermobacter spp. and the protein- and fatty acid-degrading bacteria became dominant. Accumulation of ammonia as well as volatile fatty acids led to the inhibition of microbial activity and finally resulted in the deterioration of methane fermentation of the garbage stillage.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahn JH, Forster CF (2000) Kinetic analyses of the operation of mesophilic and thermophilic anaerobic filters treating a simulated starch wastewater. Proc Biochem 36:19–23

  2. Ait N, Creuzet N, Forget P (1979) Partial purification of cellulose from Clostridium thermocellum. J Gen Microbiol 113:399–402

  3. Angelidaki I, Ahring BK (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res 28:727–731

  4. Bae JW, Park JR, Chang YH, Rhee SK, Kim BC, Park YH (2004) Clostridium hastiforme is a later synonym of Tissierella praeacuta. Int J Syst Evol Microbiol 54:947–949

  5. Bagge E, Sahlström L, Albin A (2005) The effect of hygienic treatment on the microbial flora of biowaste plants. Water Res 39:4879–4886

  6. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe (III)- and Mn (1V)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448

  7. Briones AM, Daugherty BJ, Angenent LT, Rausch KD, Tumbleson ME, Raskin L (2007) Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environ Microbiol 9:93–106

  8. Burrell PC, O'Sullivan C, Song H, Clarke WP, Blackall LL (2004) Identification, detection, and spatial resolution of cellulose degradation in a methanogenic landfill leachate bioreactor. Appl Environ Microbiol 70:2414–2419

  9. Chouari R, Paslier DL, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115

  10. Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucl Acids Res 33(Database Issue):D294–D296

  11. De Baere L (2000) Anaerobic digestion of solid waste: state-of-the-art. Water Sci Technol 41:283–290

  12. Engle M, Li Y, Woese C, Wiegel J (1995) Isolation and characterization of a novel alkali tolerant thermophile, Anaerobranca horikoshii gen. nov., sp. nov. Int J Syst Bacteriol 45:454–461

  13. Erkel C, Kemnitz D, Kube M, Ricke P, Chin KJ, Dedysh S, Reinhardt R, Conrad R, Liesack W (2005) Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53:187–204

  14. Fdéz.-Güelfo LA, Álvarez-Gallego C, Sales Márquez D, Romero García LI (2010) Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum. Bioresour Technol 101:9031–9039

  15. Fernández A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704

  16. Goberna M, Insam H, Franke-Whittle IH (2009) Effect of biowaste sludge maturation on the diversity of thermophilic bacteria and archaea in an anaerobic reactor. Appl Environ Microbiol 75:2566–2572

  17. Gorlenko V, Tsapin A, Namsaraev Z, Teal T, Tourova T, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp. nov., an anaerobic, alkali thermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743

  18. Guendouz J, Buffière P, Cacho J, Carrère M, Delgenes JP (2010) Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Manage 30:1768–1771

  19. Hatamoto M, Imachi H, Yashiro Y, Ohashi A, Harada H (2007) Diversity of anaerobic microorganisms involved in long-chain fatty acid degradation in methanogenic sludges as revealed by RNA-based stable isotope probing. Appl Environ Microbiol 73:4119–4127

  20. Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

  21. Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2006) Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl Environ Microbiol 72:1623–1630

  22. Karakashev D, Batstone DJ, Angelidaki I (2005) Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Appl Environ Microbiol 71:331–338

  23. Kobayashi T, Sawada K, Sumitomo N, Hatada Y, Hagihara H, Ito S (2003) Bifunctional pectinolytic enzyme with separate pectate lyase and pectin methylesterase domains from an alkaliphilic Bacillus. World J Microbiol Biotechnol 19:269–277

  24. Koike Y, An MZ, Tang YQ, Syo T, Osaka N, Morimura S, Kida K (2009) Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J Biosci Bioeng 108:508–512

  25. Kopečný J, Hodrová B, Stewart CS (1996) The effect of rumen chitinolytic bacteria on cellulolytic anaerobic fungi. Lett Appl Microbiol 23:199–202

  26. Krakat N, Westphal A, Schmidt SP (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850

  27. Levén L, Eriksson ARB, Schnürer (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

  28. Li T, Mazéas L, Sghir A, Leblon G, Bouchez T (2009) Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904

  29. Liu K, Tang YQ, Matsui T, Morimura S, Wu XL, Kida K (2009) Thermophilic anaerobic co-digestion of garbage, screened swine and dairy cattle manure. J Biosci Bioeng 107:54–60

  30. Madden RH (1983) Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile. Int J Syst Bacteriol 33:837–840

  31. Menes RJ, Muxí L (2002) Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. Int J Syst Evol Microbiol 52:157–164

  32. O’Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotech Bioeng 871–878

  33. Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M (2010) Bacterial diversity at different stages of the composting process. BMC Microbiol 10:94

  34. Plugge CM, Balk M, Zoetendal EG, Stams AJM (2002) Gelria glutamica gen. nov., sp. nov., a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52:401–407

  35. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res 35:7188–7196

  36. Sasaki D, Hori T, Haruta S, Ueno Y, Ishii M, Igarashi Y (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46

  37. Sasaki K, Haruta S, Ueno Y, Ishii M, Igarashi Y (2007) Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbial Biotechnol 75:941–952

  38. Sawayama S, Tsukahara K, Yagishita T (2006) Phylogenetic description of immobilized methanogenic community using real-time PCR in a fixed-bed anaerobic digester. Bioresour Technol 97:69–76

  39. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

  40. Schnürer A, Schink B, Sversson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. Int J Syst Bacteriol 46:1145–1152

  41. Shiratori H, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2008) Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 58:964–969

  42. Simankova MV, Chernych NA, Osipov GA, Zavarzin GA (1993) Halocella cellulolytica gen. nov., sp. nov., a new obligately anaerobic, halophilic, cellulolytic bacterium. Syst Appl Microbiol 16:385–389

  43. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rDNA sequence libraries from environmental samples. Appl Environ Microbiol 67:4373–4376

  44. Slobodkin AI, Tourova TP, Kostrikina NA, Lysenko AM, German KE, Bonch-Osmolovskaya EA, Birkeland NK (2006) Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. Int J Syst Evol Microbiol 56:369–372

  45. Sorokin DY, Tourova TP, Mussmann M, Muyzer G (2008) Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles 12:431–439

  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  47. Tang YQ, Fujimura Y, Shigematsu T, Morimura S, Kida K (2007a) Anaerobic treatment performance and microbial population of thermophilic upflow anaerobic filter reactor treating Awamori distillery wastewater. J Biosci Bioeng 104:281–287

  48. Tang YQ, Matsui T, Morimura S, Wu XL, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106:180–187

  49. Tang YQ, Shigematsu T, Ikbal MS, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

  50. Tang YQ, Shigematsu T, Morimura S, Kida K (2007b) Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Appl Microbiol Biotechnol 75:451–465

  51. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

  52. van Gylswyk NO (1980) Fusobacterium polysaccharolyticum sp. nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbiol 116:57–163

  53. van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, Pol LWH, Lens P, Verstraete W (2001) New perspectives in anaerobic digestion. Water Sci Technol 43:1–18

  54. Weiss A, Jérôme V, Burghardt D, Likke L, Peiffer S, Hofstetter EM, Gabler R, Freitag R (2009) Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl Microbiol Biotechnol 84:987–1001

  55. Weiss A, Jèrôme V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173

  56. Wiegel J, Tanner R, Rainey FA (2005) An introduction to the family Clostridiaceae. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, New York, pp 654–678

  57. Wu C, Dong X, Liu X (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. nov. comb. nov. Syst Appl Microbiol 30:376–380

  58. Wu C, Liu X, Dong X (2006) Syntrophomonas cellicola sp. nov., a sporeforming syntrophic bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335

  59. Yabu H, Sakai C, Fujiwara T, Nishio N, Nakashimada Y (2011) Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. J Biosci Bioeng 111:312–319

  60. Yu SL, Tang YQ, Li Y, Zhang H, Wu XL (2010) Gradient decrement of annealing time can improve PCR with fluorescent-labeled primers. J Biosci Bioeng 110:500–504

  61. Zhang P, Chen Y, Zhou Q, Zheng X, Zhu X, Zhao Y (2010) Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environ Sci Technol 44:9343–9348

  62. Zhilina TN, Zavarzina DG, Kolganova TV, Lysneko AM, Tourova TP (2009) Alkaliphilus peptidofermentans sp. nov., a new alkaliphilic bacterial soda lake isolate capable of peptide fermentation and Fe (III) reduction. Mikrobiologiia 78:445–454

  63. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed) Methanogenesis. Chapman & Hall, New York, pp 128–206

  64. Zumstein E, Moletta R, Godon JJ (2000) Examination of two years of community dynamics in an anaerobic bioreactor using fluorescence polymerase chain reaction (PCR) single-strand conformation polymorphism analysis. Environ Microbiol 2:69–78

Download references

Acknowledgment

This work was supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Correspondence to Xiao-Lei Wu or Kenji Kida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 191 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, Y., Ji, P., Hayashi, J. et al. Characteristic microbial community of a dry thermophilic methanogenic digester: its long-term stability and change with feeding. Appl Microbiol Biotechnol 91, 1447–1461 (2011). https://doi.org/10.1007/s00253-011-3479-9

Download citation

Keywords

  • Thermophilic anaerobic digestion
  • Dry anaerobic digestion
  • Cellulose degradation
  • Garbage digestion
  • Microbial community