Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bio-based production of the platform chemical 1,5-diaminopentane

Abstract

In the rising era of bio-economy, the five carbon compound 1,5-diaminopentane receives increasing interest as platform chemical, especially as innovative building block for bio-based polymers. The vital interest in bio-based supply of 1,5-diaminopentane has strongly stimulated research on the development of engineered producer strains. Based on the state-of-art knowledge on the pathways and reactions linked to microbial 1,5-diaminopentane metabolism, the review covers novel systems metabolic engineering approaches towards hyper-producing cell factories of Corynebacterium glutamicum or Escherichia coli. This is integrated into the whole value chain from renewable feedstocks via 1,5-diaminopentane to innovative biopolymers involving bioprocess engineering considerations for economic supply.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Auger EA, Bennett GN (1989) Regulation of lysine decarboxylase activity in Escherichia coli K-12. Arch Microbiol 151(5):466–468

  2. Bowman WH, Tabor CW, Tabor H (1973) Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248(7):2480–2486

  3. Brieger L (1885) Weitere Untersuchungen über Ptomaine. A. Hirschwald, Berlin

  4. Buschke N, Schröder H, Wittmann C (2011) Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol J 6(3):306–317

  5. Carothers WH (1938) Linear polyamides and their production. US Patent Office, Pat 2, 130

  6. Cassan M, Parsot C, Cohen GN, Patte JC (1986) Nucleotide sequence of lysC gene encoding the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading to three isofunctional enzymes. J Biol Chem 261(3):1052–1057

  7. Chattopadhyay MK, Tabor CW, Tabor H (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc Natl Acad Sci USA 100(5):2261–2265

  8. Hafner EW, Tabor CW, Tabor H (1979) Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem 254(24):12419–12426

  9. Haywood GW, Large PJ (1985) The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. Eur J Biochem 148(2):277–283

  10. Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ (2004) The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol 22(10):1275–1281

  11. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42(1):39–51

  12. Ikeda M (2005) L-Tryptophan production. In: Eggeling L, Bott M (eds) Handbook of Cornyebacterium glutamicum. CRC Press, Boca Raton, pp 439–463

  13. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5(5):1197–1204

  14. Kang IH, Kim JS, Kim EJ, Lee JK (2007) Cadaverine protects Vibrio vulnificus from superoxide stress. J Microbiol Biotechnol 17(1):176–179

  15. Katinka M, Cossart P, Sibilli L, Saint-Girons I, Chalvignac MA, Le Bras G, Cohen GN, Yaniv M (1980) Nucleotide sequence of the thrA gene of Escherichia coli. Proc Natl Acad Sci USA 77(10):5730–5733

  16. Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72(5):3418–3428

  17. Kelle R, Laufer B, Brunzema C, Weuster-Botz D, Krämer R, Wandrey C (1996) Reaction engineering analysis of l-lysine transport by Corynebacterium glutamicum. Biotechnol Bioeng 51(1):40–50

  18. Kelle R, Hermann T, Bathe B (2005) L-Lysine production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

  19. Kim JS, Choi SH, Lee JK (2006) Lysine decarboxylase expression by Vibrio vulnificus is induced by SoxR in response to superoxide stress. J Bacteriol 188(24):8586–8592

  20. Kimura E (2005) L-Glutamate production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 439–463

  21. Kind S, Jeong WK, Schröder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12(4):341–351

  22. Kind S, Jeong WK, Schröder H, Zelder O, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76(15):5175–5180

  23. Kjeldsen KR, Nielsen J (2009) In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic network. Biotechnol Bioeng 102(2):583–597

  24. Kurihara S, Oda S, Tsuboi Y, Kim HG, Oshida M, Kumagai H, Suzuki H (2008) Gamma-glutamylputrescine synthetase in the putrescine utilization pathway of Escherichia coli K-12. J Biol Chem 283(29):19981–19990

  25. Lee KH, Park JH, Kim TY, Kim HU, Lee SY (2007) Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 3:149

  26. Lemonnier M, Lane D (1998) Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144(Pt 3):751–760

  27. Melzer G, Esfandabadi ME, Franco-Lara E, Wittmann C (2009) Flux design: in silico design of cell factories based on correlation of pathway fluxes to desired properties. BMC Syst Biol 3:120

  28. Meng SY, Bennett GN (1992) Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174(8):2659–2669

  29. Michal G (1999) Biochemical pathways. Wiley, Chichester

  30. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135

  31. Mimizuka T, Kazami J (2002) Host and method for producing cadaverine, JP Patent 2002223770.

  32. Neely MN, Olson ER (1996) Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J Bacteriol 178(18):5522–5528

  33. Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97(9):1086–1091

  34. Oh IJ, Kim DH, Oh EK, Lee SY, Lee J (2009) Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J Microbiol Biotechnol 19(2):167–171

  35. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81(3):459–464

  36. Park JH, Lee SY (2008) Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 19(5):454–460

  37. Park JH, Lee KH, Kim TY, Lee SY (2007) Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci USA 104(19):7797–7802

  38. Popkin PS, Maas WK (1980) Escherichia coli regulatory mutation affecting lysine transport and lysine decarboxylase. J Bacteriol 141(2):485–492

  39. Qian ZG, Xia XX, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108(1):93–103

  40. Samartzidou H, Delcour AH (1999) Excretion of endogenous cadaverine leads to a decrease in porin-mediated outer membrane permeability. J Bacteriol 181(3):791–798

  41. Samsonova NN, Smirnov SV, Altman IB, Ptitsyn LR (2003) Molecular cloning and characterization of Escherichia coli K12 ygjG gene. BMC Microbiol 3(2)

  42. Soksawatmaekhin W, Kuraishi A, Sakata K, Kashiwagi K, Igarashi K (2004) Excretion and uptake of cadaverine by CadB and its physiological functions in Escherichia coli. Mol Microbiol 51(5):1401–1412

  43. Stellmacher R, Hangebrauk J, Wittmann C, Scholten E, von Abendroth G (2010) Fermentative manufacture of succinic acid with Basfia succiniciproducens DD1 in serum flasks. Chemie Ingenieur Technik 82(8):1223–1229

  44. Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49(1):81–99

  45. Tabor H, Hafner EW, Tabor CW (1980) Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase. J Bacteriol 144(3):952–956

  46. Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y (2000) Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J Bacteriol 182(23):6732–6741

  47. Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82(1):115–121

  48. Thielen M (2010) Bio-polyamides for automotive applications. Bioplastics MAGAZINE 5:10–11

  49. Tkachenko AG (2004) Mechanisms of protective functions of Escherichia coli polyamines against toxic effect of paraquat, which causes superoxide stress. Biochemistry (Mosc) 69(2):188–194

  50. Tkachenko AG, Pozhidaeva ON, Shumkov MS (2006) Role of polyamines in formation of multiple antibiotic resistance of Escherichia coli under stress conditions. Biochemistry (Mosc) 71(9):1042–1049

  51. Tkachenko AG, Shumkov MS, Akhova AV (2009) Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics. Mikrobiologiia 78(1):32–41

  52. Tyo KE, Fischer CR, Simeon F, Stephanopoulos G (2010) Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metab Eng 12(3):187–195

  53. Van Dien SJ, Iwatani S, Usuda Y, Matsui K (2006) Theoretical analysis of amino acid-producing Escherichia coli using a stoichiometric model and multivariate linear regression. J Biosci Bioeng 102(1):34–40

  54. Völkert M, Zelder O, Ernst B, Jeong WK (2009) Method for fermentatively producing 1, 5-diaminopentane, US Patent US 2010/0292429 A1

  55. Watson N, Dunyak DS, Rosey EL, Slonczewski JL, Olson ER (1992) Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 174(2):530–540

  56. Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A, Eliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L, Kelley S (2004) Top value added chemicals from biomass. Volume 1. Results of screening for potential candidates from sugars and synthesis gas, U.S. Department of Energy

  57. Wittmann C (2010) Analysis and engineering of metabolic pathway fluxes in Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 120:21–49

  58. Yamamoto K, Ishihama A (2003) Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol 47(1):183–194

  59. Yamamoto Y, Miwa Y, Miyoshi K, Furuyama J, Ohmori H (1997) The Escherichia coli ldcC gene encodes another lysine decarboxylase, probably a constitutive enzyme. Genes Genet Syst 72(3):167–172

  60. Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8(5):432–446

  61. Zakin MM, Duchange N, Ferrara P, Cohen GN (1983) Nucleotide sequence of the metL gene of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine dehydrogenase I, derive from a common ancestor. J Biol Chem 258(5):3028–3031

Download references

Acknowledgments

The authors gratefully acknowledge support by the BMBF-Grant “Biobased Polyamides through Fermentation” (No 0315239A). We further thank Dr. Guido Melzer (Institute of Biochemical Engineering, TU Braunschweig) for calculation of optimal diaminopentane yields.

Author information

Correspondence to Christoph Wittmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kind, S., Wittmann, C. Bio-based production of the platform chemical 1,5-diaminopentane. Appl Microbiol Biotechnol 91, 1287–1296 (2011). https://doi.org/10.1007/s00253-011-3457-2

Download citation

Keywords

  • Cadaverine
  • Corynebacterium glutamicum
  • Escherichia coli
  • Polyamides
  • Nylon