Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Engineering Escherichia coli for efficient cellobiose utilization


Escherichia coli normally cannot utilize the β-glucoside sugar cellobiose as a carbon and energy source unless a stringent selection pressure for survival is present. The cellobiose-utilization phenotype can be conferred by mutations in the two cryptic operons, chb and asc. In this study, the cellobiose-utilization phenotype was conferred to E. coli by replacing the cryptic promoters of these endogenous operons with a constitutive promoter. Evolutionary adaptation of the engineered strain CP12CHBASC by repeated subculture in cellobiose-containing minimal medium led to an increase in the rate of cellobiose uptake and cell growth on cellobiose. An efficient cellobiose-metabolizing E. coli strain would be of great importance over glucose-metabolizing E. coli for a simultaneous saccharification and fermentation process, as the cost of the process would be reduced by eliminating one of the three enzymes needed to hydrolyze cellulose into simple sugars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Adin DM, Visick KL, Stabb EV (2008) Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl Environ Microbiol 74:4059–4069. doi:

  2. Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Engin 10:305–311. doi:

  3. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462. doi:

  4. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of FLP-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14. doi:

  5. Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86:419–434. doi:

  6. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

  7. Ghim CM, Kim T, Mitchell RJ, Lee SK (2010) Synthetic biology for biofuels: building designer microbes from the scratch. Biotechnol Bioproce Eng 15:11–21. doi:

  8. Ha S-J, Galazka JM, Rin Kim S, Choi J-H, Yang X, Seo J-H, Louise Glass N, Cate JHD, Jin Y-S (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 108:504–509. doi:

  9. Hall BG (1999) Transposable elements as activators of cryptic genes in E. coli. Genetica 107:181–187

  10. Hall BG, Betts PW (1987) Cryptic genes for cellobiose utilization in natural isolates of Escherichia coli. Genetics 115:431–439

  11. Hall BG, Xu L (1992) Nucleotide- sequence, function, activation and evolution of the cryptic asc operon of Escherichia coli K- 12. Mol Biol Evol 9:688–706

  12. Hall BG, Betts PW, Kricker M (1986) Maintenance of the cellobiose utilization genes of Escherichia coli in a cryptic state. Mol Biol Evol 3:389–402

  13. Jarboe LR, Zhang XL, Wang X, Moore JC, Shanmugam KT, Ingram LO (2010) Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol. doi: 76104210.1155/2010/761042

  14. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

  15. Kachroo AH, Kancherla AK, Singh NS, Varshney U, Mahadevan S (2007) Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose. Mol Microbiol 66:1382–1395. doi:

  16. La Grange D, den Haan R, van Zyl W (2010) Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 87:1195–1208. doi:

  17. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563. doi:

  18. Lee SM, Jin LH, Kim JH, Han SO, Na HB, Hyeon T, Koo YM, Kim J, Lee JH (2010) Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioprocess Biosyst Eng 33:141–147. doi:

  19. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583. doi:

  20. Moniruzzaman M, Lai X, York S, Ingram L (1997) Isolation and molecular characterization of high-performance cellobiose-fermenting spontaneous mutants of ethanologenic Escherichia coli KO11 containing the Klebsiella oxytoca casAB operon. App Environ Microbiol 63:4633–4637

  21. Mukerji M, Mahadevan S (1997) Cryptic genes: evolutionary puzzles. J Genet 76:147–159

  22. Negrete A, Ng W-I, Shiloach J (2010) Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21). Microb Cell Fact 9:75

  23. Panesar PS, Marwaha SS, Kennedy JF (2006) Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 81:623–635. doi:

  24. Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162. doi:

  25. Plumbridge J, Pellegrini O (2004) Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52:437–449. doi:

  26. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562,

  27. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804. doi:

  28. van Rooyen R, Hahn-Hägerdal B, La Grange DC, van Zyl WH (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J Biotechnol 120:284–295. doi:

  29. Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol 87:1303–1315. doi:

  30. Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels production. Curr Opin Biotechnol 20:412–419

  31. Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371. doi:

Download references


This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science, and Technology (MEST) of the Korean Government (NRF-2009-C1AAA001-2009-0093479); by the Basic Science Research Program, through the NRF, funded by the MEST (NRF-2009-0076912); and by the World Class University (WCU) program, through the Korea Science and Engineering Foundation, funded by the MEST (R31-2008-000-20012-0).

Author information

Correspondence to Sung Kuk Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vinuselvi, P., Lee, S.K. Engineering Escherichia coli for efficient cellobiose utilization. Appl Microbiol Biotechnol 92, 125–132 (2011).

Download citation


  • chb operon
  • Cellobiose metabolism
  • asc operon
  • Cryptic genes
  • Escherichia coli