Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bacterial cellulose-based materials and medical devices: current state and perspectives


Bacterial cellulose (BC) is a unique and promising material for use as implants and scaffolds in tissue engineering. It is composed of a pure cellulose nanofiber mesh spun by bacteria. It is remarkable for its strength and its ability to be engineered structurally and chemically at nano-, micro-, and macroscales. Its high water content and purity make the material biocompatible for multiple medical applications. Its biocompatibility, mechanical strength, chemical and morphologic controllability make it a natural choice for use in the body in biomedical devices with broader application than has yet been utilized. This paper reviews the current state of understanding of bacterial cellulose, known methods for controlling its physical and chemical structure (e.g., porosity, fiber alignment, etc.), biomedical applications for which it is currently being used, or investigated for use, challenges yet to be overcome, and future possibilities for BC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Azuma C, Yasuda K, Tanabe Y, Taniguro H, Kanaya F, Nakayama A, Chen YM, Gong JP, Osada Y (2007) Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J Biomed Mater Res, Part A 81:373–380. doi:

  2. Bäckdahl H (2008) Engineering the shape of bacterial cellulose and its use as blood vessel replacement [PhD Thesis]. Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden.

  3. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149. doi:

  4. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008a) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330. doi:

  5. Bäckdahl H, Risberg B, Gatenholm P (2008a) Observations on bacterial cellulose tube formation and ways to introduce microporosity. Dissertation, Chalmers University of Technology, Göteborg, Sweden

  6. Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008a) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C 28:515–518. doi:

  7. Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008b) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471:61–69. doi:

  8. Bodin A. (2007) Biomedical applications of bacterial cellulose: fermentation, morphology and surface properties. Dissertation, Department of Chemical and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden

  9. Bodin A, Ahrenstedt L (2007) Modification of nanocellulose with a xyloglucan–RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8:3697–3704. doi:

  10. Bodin A, Bäckdahl H, Fink H, Gustaffson L, Risberg B, Gatenholm P (2007a) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97:425–434. doi:

  11. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007b) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regener Med 1:406–408. doi:

  12. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901. doi:

  13. Bowry SK, Rintelen TH (1998) Synthetically modified cellulose (SMC): a cellulosic hemodialysis membrane with minimized complement activation. ASAIO J 44:M579–M583. doi:

  14. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352. doi:

  15. Czaja W, Romanovicz D, Brown RM (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11:403–411. doi:

  16. Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151. doi:

  17. Czaja WK, Young DJ, Kawecki M, Browm RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:

  18. Ducheyne P, Qiu Q (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20:2287–2303. doi:

  19. Dulgar-Tulloch AJ, Bizios R, Siegel RW (2009) Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J Biomed Mater Res, Part A 90:586–594. doi:

  20. Esguerra M, Fink H, Laschke MW, Delbro D, Jeppsson A, Gatenholm P, Menger MG, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res, Part A 93A:140–149. doi:

  21. Falcao SC, Coelho ARD, Neto JE (2008a) Biomechanical evaluation of microbial cellulose (Zoogloea sp.) and expanded polytetrafluoroethylene membranes as implants in repair of produced abdominal wall defects in rats. Acta Cir Bras 23:184–191. doi:

  22. Falcao SC, Neto JE, Coelho AR (2008b) Incorporation by host tissue of two biomaterials used as repair of defects produced in abdominal wall of rats. Acta Cir Bras 23:78–83. doi:

  23. Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098. doi:

  24. Fink H, Hong J, Drotz K, Risberg B, Sanchez J, Sellborn A (2011) An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionally-used graft materials. J Biomed Mater Res, Part A 97A:52–58. doi:

  25. Fontana JD, Desouza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, Desouza SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24–25:253–264. doi:

  26. Garrett RH, Grisham CH (2005) Biochemistry, 3rd edn. Brooks/Cole, Belmont, pp 223–224

  27. Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213. doi:

  28. Habibovic P, Yuan HP, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26:3565–3575. doi:

  29. Harris J, Serafica G, Damien C, Nonnenmann H (2010) Oxidized microbial cellulose and use thereof. US Patent 7,709,631

  30. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431–438. doi:

  31. Hoenich N (2006) Cellulose for medical applications: past, present, and future. BioResources 1:270–280

  32. Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials 27:4661–4670. doi:

  33. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260. doi:

  34. Izeboud E (1992) Biocompatibility of cellulose and cellulose derivatives. Papier 46:722–725

  35. Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271. doi:

  36. Jung H, Yoon HG, Park WJ, Choi C, Wilson DB, Shin DH, Kim YJ (2008) Effect of sodium hydroxide treatment of bacterial cellulose on cellulase activity. Cellulose 15:465–471. doi:

  37. Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4:1059–1065. doi:

  38. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21. doi:

  39. Klechkovskaya VV, Volkov VV, Shtykova EV, Arkharova NA, Baklagina YG, Khripunov AK, Smyslov RY, Borovikova LN, Tkachenko AA (2008) Network model of Acetobacter xylinum cellulose intercalated by drug nanoparticles. In: Giersig M, Khomutov GB (eds) Nanomaterials for Application in Medicine and Biology. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Netherlands, pp 165–177. doi:

  40. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:

  41. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:

  42. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:

  43. Kondo T, Nojiri M, Hishikawa Y, Togawa E, Romanovicz D, Brown RM (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proc Natl Acad Sci USA 99:14008–14013. doi:

  44. Kramer F, Klemm D, Schumann D, Heßler N, Wesarg F, Fried W, Stadermann D (2006) Nanocellulose polymer composites as innovative pool for (bio)material development. Macromol Symp 244:136–148. doi:

  45. Kumar V (2004) Regenerated cellulose and oxidized cellulose membranes as potential biodegradable platforms for drug delivery and tissue engineering. US Patent 6,800,753

  46. Kumar V, Dang Y (2010) Biodegradable oxidized cellulose esters. US Patent 7,662,801

  47. Kumar V, Dong Y (2009) Biodegradable oxidized cellulose esters. US Patent 7,595,392

  48. Lau RKL, Kwok ACM, Chan WK, Zhang TY, Wong JTY (2007) Mechanical characterization of cellulosic thecal plates in dinoflagellates by nanoindentation. J Nanosci Nanotechnol 7:452–457. doi:

  49. Laurence S, Bareille R, Baquey C, Fricain JC (2005) Development of a resorbable macroporous cellulosic material used as hemostatic in an osseous environment. J Biomed Mater Res, Part A 73:422–429. doi:

  50. Levinson D, Glonek T (2008) Microbial cellulose contact lens. US Patent 7,832,857

  51. Li J, Wan YZ, Li LF, Liang H, Wang JH (2009) Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater Sci Eng C 29:1635–1642. doi:

  52. Martson M, Viljanto J, Hurme T, Saukko P (1998a) Biocompatibility of cellulose sponge with bone. Eur Surg Res 30:426–432. doi:

  53. Martson M, Viljanto J, Laippala P, Saukko P (1998b) Connective tissue formation in subcutaneous cellulose sponge implants in the rat—the effect of the size and cellulose content of the implant. Eur Surg Res 30:419–425. doi:

  54. Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995. doi:

  55. Millon LE, Wan WK (2006) The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications. J Biomed Mater Res, Part B 79:245–253. doi:

  56. Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133. doi:

  57. Nguyen VT, Gidley MJ, Dykes GA (2008) Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol 25:471–478. doi:

  58. Oshima T, Kondo K, Ohto K, Inoue K, Baba Y (2008) Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. Reactive Funct Polym 68:376–383. doi:

  59. Park HO, Bang YB, Joung HJ, Kim BC, Kim HR (2004) Lactobacillus KCTC 0774BP and acetobacter KCTC 0773BP for treatment or prevention of obesity and diabetes mellitus. US Patent 6,808,703

  60. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y, Uemura T, Yamamoto M (2008a) Production of bacterial cellulose with well oriented fibril on PDMS substrate. Polym J 40:137–142. doi:

  61. Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008b) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891. doi:

  62. Rambo CR, Recouvreux DOS, Carminatti CA, Pitlovanciv AK, Antonio RV, Porto LM (2008) Template assisted synthesis of porous nanofibrous cellulose membranes for tissue engineering. Mater Sci Eng C 28:549–554. doi:

  63. Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677. doi:

  64. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

  65. Saferstein L, Serafica G (2010) Cellulose oxidation by nitrogen dioxide in a perfluorinated tertiar amine solvent. US Patent 7,645,874

  66. Sano MB, Rojas AD, Gatenholm P, Davalos RV (2010) Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann Biomed Eng 38:2475–2484. doi:

  67. Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H, Wahlers T, Salehi-Gelani S (2008) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885. doi:

  68. Shih IL (2010) Microbial exo-polysaccharides for biomedical applications. Mini-Rev Med Chem 10:1345–1355. doi:

  69. Sibilla P, Sereni A, Aguiari G, Banzi M, Manzati E, Mischiati C, Trombelli L, del Senno L (2006) Effects of a hydroxyapatite-based biomaterial on gene expression in osteoblast-like cells. J Dent Res 85:354–358. doi:

  70. Singh M, Ray AR, Vasudevan P, Verma K, Guha SK (1979) Potential biosoluble carriers: biocompatibility and biodegradability of oxidized cellulose. Biomater Med Devices Artif Organs 7:495–512. doi:

  71. Smith IO, McCabe LR, Baumann MJ (2006) MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomedicine 1:189–194. doi:

  72. Stevens B, Yang YZ, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res, Part B 85B:573–582. doi:

  73. Stoica-Guzun A, Stroescu M, Tache F, Zaharescu T, Grosu E (2007) Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems. Nucl Instrum Methods Phys Res, Sect B 265:434–438. doi:

  74. Stylios G, Wan T, Giannoudis P (2007) Present status and future potential of enhancing bone healing using nanotechnology. Injury 38(Suppl 1):S63–S74. doi:

  75. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431. doi:

  76. Uraki Y, Nemoto J, Otsuka H, Tamai Y, Sugiyama J, Kishimoto T, Ubukata M, Yabu H, Tanaka M, Shimomura M (2007) Honeycomb-like architecture produced by living bacteria, Gluconacetobacter xylinus. Carbohydr Polym 69:1–6. doi:

  77. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864. doi:

  78. Wang G, Chen XF, Shi XD, Yu LJ, Liu BF, Yang G (2008) Bio-fabrication of patterned cellulose nano-fibers. Adv Mater Res: Multi-functional Mater Struct 47–50:1359–1362. doi:

  79. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200. doi:

  80. White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerch C (ed) Cellulose and wood—chemistry and technology. Wiley, New York, pp 573–590

  81. Wouk AF, Diniz JM, Cirio SM, Santos H, Baltazar EL, Acco A (1998) Membrana biologica (Biofill)—estudo comparativo com outros agentes promotores da cicatrizacao da pele em suinos: aspectos clinicos, histopatologicos e morfometricos. Arch Vet Sci 3:31–37

  82. Wurdinger J, Marsch S, Udhardt U, Schumann HD (2000) BASYC (bacterial synthesized cellulose)—the vitalization of a microvessel-prosthesis in the rat. Microsurgery 20:268. doi:<267::AID-MICR1>3.0.CO;2-J, Abstracts from the Eur Fed Soc Microsurgery

Download references


ICTAS funding, Project 555053 Bone Healing is acknowledged for financial support.

Author disclosure statement

Dr. Gatenholm is a cofounder of Arterion but no longer associated with the company. He is also cofounder of BC Genesis.

Author information

Correspondence to Paul Gatenholm.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petersen, N., Gatenholm, P. Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91, 1277–1286 (2011).

Download citation


  • Bacterial cellulose
  • Microbial cellulose
  • Nanocellulose
  • Biocompatibility
  • Biomedical
  • Acetobacter xylinum