Skip to main content
Log in

High level expression of a recombinant amylosucrase gene and selected properties of the enzyme

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Two high-level heterologous expression systems for amylosucrase genes have been constructed. One depends on sigma-70 bacterial RNA polymerase, the other on phage T7 RNA polymerase. Translational fusions were formed between slightly truncated versions of the gene from Neisseria polysaccharea and sequences of expression vectors pQE-81L or pET33b(+), respectively. These constructs were introduced into different Escherichia coli strains. The resulting recombinants yielded up to 170 mg of dissolved enzyme per litre of culture at a moderate cell density of five OD600. To our knowledge, this is the highest yield per cell described so far for amylosucrases. The recombinant enzymes could rapidly be purified through the use of histidine tags in the N-terminally attached sequences. These segments did not alter catalytic properties and therefore need not be removed for most applications. Investigations with glucose and malto-oligosaccharides of different lengths identified rate-limiting steps in the elongation (acceptor reaction) and truncation (donor reaction) of these substrates. The elongation of maltotriose and its reversal, the truncation of maltotetraose, were found to be particularly slow reactions. Potential reasons are discussed, based on the crystal structure of the enzyme. It is furthermore shown that amylosucrase is able to synthesise mixed disaccharides. All of the glucose epimers mannose, allose, and galactose served as acceptors, yielding between one and three main products. We also demonstrate that, as an alternative to the use of purified amylosucrase, cells of the constructed recombinant strains can be used to carry out glucosylations of acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albenne C, Skov LK, Mirza O, Gajhede M, Potocki-Véronèse G, Monsan P, Remaud-Siméon M (2002) Maltooligosaccharide disproportionation reaction: an intrinsic property of amylosucrase from Neisseria polysaccharea. FEBS Lett 527:67–70

    Article  CAS  Google Scholar 

  • Albenne C, Skov LK, Mirza O, Gajhede M, Feller G, D’Amico S, André G, Potocki-Véronèse G, van der Veen BA, Monsan P, Remaud-Siméon M (2004) Molecular basis of the amylose-like polymer formation catalyzed by Neisseria polysaccharea amylosucrase. J Biol Chem 279:726–734

    Article  CAS  Google Scholar 

  • Bartels F, Backhaus S, Moore ERB, Timmis KN, Hofer B (1999) Occurrence and expression of glutathione S-transferase-encoding bphK genes in Burkholderia sp. strain LB400 and other biphenyl-utilizing bacteria. Microbiology (UK) 145:2821–2834

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities utilising the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Büttcher V, Welsh T, Willmitzer L, Kossmann J (1997) Cloning and characterization of the gene for amylosucrase from Neisseria polysaccharea: production of a linear α-1, 4-glucan. J Bacteriol 179:3324–3330

    Google Scholar 

  • Champion E, André I, Moulis C, Boutet J, Descroix K, Morel S, Monsan P, Mulard LA, Remaud-Siméon M (2009) Design of α-transglucosidases of controlled specificity for programmed chemoenzymatic synthesis of antigenic oligosaccharides. J Am Chem Soc 131:7379–7389

    Article  CAS  Google Scholar 

  • DeLano WL (2007) Available at http://www.pymol.org

  • Grant SGN, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  Google Scholar 

  • Ha S-J, Seo D-H, Jung J-H, Cha J, Kim T-J, Kim YW, Park C-S (2009) Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci Biotechnol Biochem 73:1505–1512

    Article  CAS  Google Scholar 

  • Hehre EJ, Hamilton DM, Carlson AS (1949) Synthesis of a polysaccharide of the starch-glycogen class from sucrose by a cell-free, bacterial enzyme system (amylosucrase). J Biol Chem 177:267–279

    CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316

    CAS  Google Scholar 

  • Henrissat B, Davies GJ (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Op Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  • Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK (2004) Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43:3104–3110

    Article  CAS  Google Scholar 

  • MacKenzie CR, Perry MB, McDonald IJ, Johnson KG (1978) Structure of the d-glucans produced by Neisseria perflava. Can J Microbiol 24:1419–1422

    Article  CAS  Google Scholar 

  • Mayer RM (1987) Dextransucrase: a glucosyltransferase from Streptococcus sanguis. Methods Enzymol 138:649–661

    Article  CAS  Google Scholar 

  • Mirza O, Skov LK, Remaud-Siméon M, Potocki de Montalk G, Albenne C, Monsan P, Gajhede M (2001) Crystal structures of amylosucrase from Neisseria polysaccharea in complex with d-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40:9032–9039

    Article  CAS  Google Scholar 

  • Mukerjea R, Kim D, Robyt JF (1996) Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydr Res 292:11–20

    CAS  Google Scholar 

  • Okada G, Hehre EJ (1974) New studies on amylosucrase, a bacterial a-d-glucosylase that directly converts sucrose to a glycogen-like a-glucan. J Biol Chem 249:126–135

    CAS  Google Scholar 

  • Pizzut-Serin S, Potocki-Véronèse G, van der Veen BA, Albenne C, Monsan P, Remaud-Siméon M (2005) Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Lett 579:1405–1410

    Article  CAS  Google Scholar 

  • Potocki de Montalk G, Remaud-Siméon M, Willemot RM, Planchot V, Monsan P (1999) Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J Bacteriol 181:375–381

    Google Scholar 

  • Potocki de Montalk G, Remaud-Siméon M, Willemot RM, Monsan P (2000a) Characterisation of the activator effect of glycogen on amylosucrase from Neisseria polysaccharea. FEMS Microbiol Lett 186:103–108

    Article  CAS  Google Scholar 

  • Potocki de Montalk G, Remaud-Siméon M, Willemot RM, Sarçabal P, Planchot V, Monsan P (2000b) Amylosucrase from Neisseria polysaccharea: novel catalytic properties. FEBS Lett 471:219–223

    Article  CAS  Google Scholar 

  • Riou JY, Guibourdenche M, Popoff MY (1983) A new taxon in the genus Neisseria. Ann Inst Pasteur Microbiol 134:257–267

    Article  Google Scholar 

  • Robyt JF, Mukerjea R (1994) Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr Res 251:187–202

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory

    Google Scholar 

  • Schneider J, Fricke C, Overwin H, Hofmann B, Hofer B (2009) Generation of amylosucrase variants that terminate catalysis of acceptor elongation at the di- or trisaccharide stage. Appl Environ Microbiol 75:7453–7460

    Article  CAS  Google Scholar 

  • Skov LK, Mirza O, Henriksen A, Potocki de Montalk G, Remaud-Siméon M, Sarçabal P, Willemot RM, Monsan P, Gajhede M (2001) Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. J Biol Chem 276:25273–25278

    Article  CAS  Google Scholar 

  • Skov LK, Mirza O, Sprogoe D, Dar I, Remaud-Siméon M, Albenne C, Monsan P, Gajhede M (2002) Oligosaccharide and sucrose complexes of amylosucrase. Structural implications for the polymerase activity. J Biol Chem 277:47741–47747

    Article  CAS  Google Scholar 

  • Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht H-J, Hofer B (2007) Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett 581:4036–4042

    Article  CAS  Google Scholar 

  • Swistowska AM, Wittrock S, Collisi W, Hofer B (2008) Heterologous hyper-expression of a glucansucrase type glycosyltransferase gene. Appl Microbiol Biotechnol 79:255–261

    Article  CAS  Google Scholar 

  • Tao BY, Reilly PJ, Robyt JF (1988) Neisseria perflava amylosucrase: characterization of its product polysaccharide and a study of its inhibition by sucrose derivatives. Carbohydr Res 181:163–173

    Article  CAS  Google Scholar 

  • Zhu P, Tsang RSW, Tsai C-M (2003) Nonencapsulated Neisseria meningitidis strain produces amylopectin from sucrose: altering the concept for differentiation between N. meningitidis and N. polysaccharea. J Clin Microbiol 41:273–278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of parts of this work by the Deutsche Forschungsgemeinschaft through SFB 578, project A3, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, J., Fricke, C., Overwin, H. et al. High level expression of a recombinant amylosucrase gene and selected properties of the enzyme. Appl Microbiol Biotechnol 89, 1821–1829 (2011). https://doi.org/10.1007/s00253-010-3000-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3000-x

Keywords

Navigation