Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Structural and physicochemical properties of polar lipids from thermophilic archaea

  • 949 Accesses

  • 44 Citations


The essential general features required for lipid membranes of extremophilic archaea to fulfill biological functions are that they are in the liquid crystalline phase and have extremely low permeability of solutes that is much less temperature sensitive due to a lack of lipid-phase transition and highly branched isoprenoid chains. Many accumulated data indicate that the organism’s response to extremely low pH is the opposite of that to high temperature. The high temperature adaptation does not require the tetraether lipids, while the adaptation of thermophiles to acidic environment requires the tetraether polar lipids. The presence of cyclopentane rings and the role of polar heads are not so straightforward regarding the correlations between fluidity and permeability of the lipid membrane. Due to the unique lipid structures and properties of archaeal lipids, they are a valuable resource in the development of novel biotechnological processes. This microreview focuses primarily on structural and physicochemical properties of polar lipids of (hyper)thermophilic archaea.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Arakawa K, Kano H, Eguchi T, Nishiyama Y, Kakinuma K (1999) Significance of the 72-membered macrocyclic structure found in archaeal membrane lipids: model studies of the macrocyclic tetraether diphospholipids by calorimetric, P-31 NMR, and electron microscopic analyses. Bull Chem Soc Jpn 727:1575–1581

  2. Bartucci R, Gambacorta A, Gliozzi A, Marsh D, Sportelli L (2005) Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron spin resonance. Biochemistry 4445:15017–15023

  3. Bauer S, Heckmann K, Six L, Strobl C, Blöcher D, Henkel B, Garbe T, Ring K (1983) Hyperfiltration through crosslinked monolayers II. Desalination 461–3:369–378

  4. Benvegnu T, Lemiegre L, Cammas-Marion S (2008) Archaeal lipids: innovative materials for biotechnological applications. Eur J Org Chem 28:4725–4744

  5. Berzina TS, Troitsky VI, Vakula S, Riccio A, Morana A, De Rosa M, Dante S, Maccioni E, Rustichelli F, Accossato P, Nicolini C (1995) Langmuir–Blodgett-films of bipolar lipids from thermophilic archaea. Mater Sci Eng C Biomim Mater Sens Syst 31:13–21

  6. Berzina TS, Troitsky VI, Vakula S, Riccio A, De Rosa M, Nicolini C (1997) Surface potential study of selective interaction of potassium ions with valinomycin in Langmuir-Blodgett films. Mater Sci Eng C Biomim Mater Sens Syst 51:1–6

  7. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 11:14–21

  8. Brard M, Laine C, Rethore G, Laurent I, Neveu C, Lemiegre L, Benvegnu T (2007) Synthesis of archaeal bipolar lipid analogues: a way to versatile drug/gene delivery systems. J Org Chem 7222:8267–8279

  9. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 63:245–252

  10. Chang EL (1992) New class of lubricants derived from archaebacterial lipids. The United States of America as represented by the Secretary of the Navy. United States Patent 5,098,588

  11. Chang EL (1994) Unusual thermal stability of liposomes made from bipolar tetraether lipids. Biochem Biophys Res Commun 2022:673–679

  12. Chong PLG, Zein M, Khan TK, Winter R (2003) Structure and conformation of bipolar tetraether lipid membranes derived from thermoacidophilic archaeon Sulfolobus acidocaldarius as revealed by small-angle X-ray scattering and high-pressure FT-IR spectroscopy. J Phys Chem B 10733:8694–8700

  13. Chong PLG, Ravindra R, Khurana M, English V, Winter R (2005) Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Biophys J 893:1841–1849

  14. Comita PB, Gagosian RB, Pang H, Costello CE (1984) Structural elucidation of a unique macrocyclic membrane lipid from a new, extremely thermophilic, deep-sea hydrothermal vent archaebacterium, Methanococcus jannaschii. J Biol Chem 25924:5234–5241

  15. De Rosa M, Gambacorta A, Trincone A, Basso A, Zillig W, Holz I (1987) Lipids of Thermococcus celer, a sulfur-reducing archaebacterium—structure and biosynthesis. Syst Appl Microbiol 91–2:1–5

  16. De Rosa M, Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 273:153–175

  17. De Rosa M, Morana A, Riccio A, Gambacorta A, Trincone A, Incani O (1994) Lipids of the archaea: a new tool for bioelectronics. Biosens Bioelectron 99–10:669–675

  18. De Rosa M (1996) Archaeal lipids: structural features and supramolecular organization. Thin Solid Films 284–285:13–17

  19. Elferink MGL, de Wit JG, Driessen AJM, Konings WN (1994) Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim Biophys Acta Biomembr 11932:247–254

  20. Ellen A, Albers SV, Huibers W, Pitcher A, Hobel C, Schwarz H, Folea M, Schouten S, Boekema E, Poolman B, Driessen A (2009) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 131:67–79

  21. Erauso G, Reysenbach AL, Godfroy A, Meunier JR, Crump B, Partensky F, Baross JA, Marteinsson V, Barbier G, Pace NR, Prieur D (1993) Pyrococcus abyssi sp-nov, a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol 1605:338–349

  22. Ferrante G, Richards JC, Sprott GD (1990) Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii. Biochem Cell Biol 681:274–283

  23. Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 2094455:457–463

  24. Gambacorta A, Gliozzi A, De Rosa M (1995) Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 111:115–131

  25. Gliozzi A, Relini A, Chong PLG (2002) Structure and permeability properties of biomimetic membranes of bolaform archaeal tetraether lipids. J Membr Sci 2061:131–147

  26. Godfroy A, Meunier JR, Guezennec J, Lesongeur F, Raguenes G, Rimbault A, Barbier G (1996) Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 464:1113–1119

  27. Hensel R, Matussek K, Michalke K, Tacke L, Tindall BJ, Kohlhoff M, Siebers B, Dielenschneider J (1997) Sulfophobococcus zilligii gen. nov., spec. nov. a novel hyperthermophilic archaeum isolated from hot alkaline springs of Iceland. Syst Appl Microbiol 201:102–110

  28. Hoefs MJL, Schouten S, De Leeuw JW, King LL, Wakeham SG, Damste JSS (1997) Ether lipids of planktonic archaea in the marine water column. Appl Environ Microbiol 638:3090–3095

  29. Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38

  30. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 506:2093–2100

  31. Itoh T, Suzuki K, Nakase T (1998) Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48:879–887

  32. Itoh T, Suzuki K, Sanchez PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 493:1157–1163

  33. Itoh Y, Kurosawa N, Uda I, Sugai A, Tanoue S, Itoh T, Horiuchi T, Itoh T (2001) Metallosphaera sedula TA-2, a calditoglycerocaldarchaeol deletion strain of a thermoacidophilic archaeon. Extremophiles 54:241–245

  34. Itoh T, Suzuki K, Sanchez PC, Nakase T (2003) Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 534:1149–1154

  35. Itoh T, Yoshikawa N, Takashina T (2007) Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Syst Evol Microbiol 5711:2557–2561

  36. Jahn U, Summons R, Sturt H, Grosjean E, Huber H (2004) Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. strain KIN4/I. Arch Microbiol 1825:404–413

  37. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 3015635:934

  38. Khan TK, Chong PLG (2000) Studies of archaebacterial bipolar tetraether liposomes by perylene fluorescence. Biophys J 783:1390–1399

  39. Koga Y, Kyuragi T, Nishihara M, Sone N (1998) Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 461:54–63

  40. Koga Y, Morii H (2005) Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem 6911:2019–2034

  41. Koga Y, Morii H (2006) Special methods for the analysis of ether lipid structure and metabolism in archaea. Anal Biochem 3481:1–14

  42. Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 711:97–120

  43. Komatsu H, Chong PLG (1998) Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biochemistry 371:107–115

  44. Krishnan L, Sprott GD (2008) Archaeosome adjuvants: immunological capabilities and mechanism(s) of action. Vaccine 2617:2043–2055

  45. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456

  46. Lai D, Springstead J, Monbouquette H (2008) Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. Extremophiles 122:271–278

  47. Lanzotti V, De Rosa M, Trincone A, Basso AL, Gambacorta A, Zillig W (1987) Complex lipids from Desulfurococcus mobilis, a sulfur-reducing archaebacterium. Biochim Biophys Acta 9222:95–102

  48. Lanzotti V, Trincone A, Nicolaus B, Zillig W, De Rosa M, Gambacorta A (1989) Complex lipids of Pyrococcus and AN1, thermophilic members of archaebcteria belonging to Thermococcales. Biochim Biophys Acta 10041:44–48

  49. Lattuati A, Guezennec J, Metzger P, Largeau C (1998) Lipids of Thermococcus hydrothermalis, an archaea isolated from a deep-sea hydrothermal vent. Lipids 333:319–326

  50. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 4427104:806–809

  51. Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp a key to survival in acid. Extremophiles 85:411–419

  52. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 492:351–359

  53. Mathai JC, Sprott GD, Zeidel ML (2001) Molecular mechanisms of water and solute transport across archaebacterial lipid membranes. J Biol Chem 27629:27266–27271

  54. Matsuno Y, Sugai A, Higashibata H, Fukuda W, Ueda K, Uda I, Sato I, Itoh T, Imanaka T, Fujiwara S (2009) Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. Biosci Biotechnol Biochem 731:104–108

  55. Meister A, Blume A (2007) Self-assembly of bipolar amphiphiles. Curr Opin Colloid Interface Sci 123:138–147

  56. Morii H, Eguchi T, Nishihara M, Kakinuma K, König H, Koga Y (1998) A novel ether core lipid with H-shaped C80-isoprenoid hydrocarbon chain from the hyperthermophilic methanogen Methanothermus fervidus. Biochim Biophys Acta 13903:339–345

  57. Morii H, Yagi H, Akutsu H, Nomura N, Sako Y, Koga Y (1999) A novel phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Biochim Biophys Acta Mol Cell Biol Lipids 14363:426–436

  58. Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 8613:2038–2045

  59. Muller S, Pfannmuller M, Teuscher N, Heilmann A, Rothe U (2006) New method for surface modification of nanoporous aluminum oxide membranes using tetraether lipid. J Biomed Nanotechnol 21:16–22

  60. Patel GB, Sprott GD (1999) Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit Rev Biotechnol 194:317–357

  61. Peretó J, López-García P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 299:469–477

  62. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 4407086:918–921

  63. Reysenbach AL, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 4427101:444–447

  64. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int J Syst Bacteriol 464:1070–1077

  65. Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk HP, Zillig W (1995) Picrophilus gen. nov., fam. nov.; a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH-0. J Bacteriol 17724:7050–7059

  66. Schleper C, Puhler G, Klenk HP, Zillig W (1996) Picrophilus oshimae and Picrophilus torridus fam nov, gen nov, sp nov, two species of hyperacidophilic, thermophilic, heterotrophic, aerobic archaea. Int J Syst Bacteriol 463:814–816

  67. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2008) Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 19015:5404–5411

  68. Sprott GD, Agnew BJ, Patel GB (1997a) Structural features of ether lipids in the archaeobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can J Microbiol 435:467–476

  69. Sprott GD, Tolson DL, Patel GB (1997b) Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett 1541:17–22

  70. Sprott GD, Brisson JR, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, Patel GB (1999) A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta Mol Cell Biol Lipids 14402–14403:275–288

  71. Sprott GD, Sad S, Fleming LP, Dicaire CJ, Patel GB, Krishnan L (2003) Archaeosomes varying in lipid composition differ in receptor-mediated endocytosis and differentially adjuvant immune responses to entrapped antigen. Archaea 13:151–164

  72. Stadnitskaia A, Baas M, Ivanov MK, Tjeerd CE, Weering V, Damste JSS (2002) Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin Trough, NE Black Sea. Archaea 1:165–173

  73. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500

  74. Trincone A, Nicolaus B, Palmieri G, De Rosa M, Huber R, Huber G, Stetter KO, Gambacorta A (1992) distribution of complex and core lipids within new hyperthermophilic members of the archaea domain. Syst Appl Microbiol 151:11–17

  75. Uda I, Sugai A, Itoh Y, Itoh T (2000) Characterization of caldarchaetidylglycerol analogs, dialkyl-type and trialkyl-type, from Thermoplasma acidophilum. Lipids 3510:1155–1157

  76. Ulrih NP, Adamlje U, Nemec M, Sentjurc M (2007) Temperature- and pH-induced structural changes in the membrane of the hyperthermophilic archaeon Aeropyrum pernix K1. J Membr Biol 2191–2193:1–8

  77. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 54:316–323

  78. Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 599:2918–2926

  79. Wachtershauser G (2003) From pre-cells to Eukarya—a tale of two lipids. Mol Microbiol 471:13–22

  80. William M, Michael JR (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 3581429:59–85

  81. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 7411:5088–5090

  82. Woese CR (1987) Bacterial evolution. Microbiol Mol Biol Rev 512:221–271

  83. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci U S A 87:4576–4579

  84. Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci U S A 10333:12317–12322

  85. Yamauchi K, Doi K, Yoshida Y, Kinoshita M (1993) Archaebacterial lipids: highly proton-impermeable membranes from 1, 2-diphytanyl-sn-glycero-3-phosphocoline. Biochim Biophys Acta Biomembr 11462:178–182

  86. Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 1727:3959–3965

Download references

Author information

Correspondence to Nataša Poklar Ulrih.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ulrih, N.P., Gmajner, D. & Raspor, P. Structural and physicochemical properties of polar lipids from thermophilic archaea. Appl Microbiol Biotechnol 84, 249–260 (2009).

Download citation


  • Thermophiles
  • Archaeal polar lipids
  • Archaeosomes
  • Physicochemical properties
  • Biotechnological applications