Advertisement

Applied Microbiology and Biotechnology

, Volume 83, Issue 6, pp 989–999 | Cite as

The metabolomics of carotenoids in engineered cell factory

  • Guan-Nan Liu
  • Yue-Hui Zhu
  • Jian-Guo JiangEmail author
Mini-Review

Abstract

Carotenoids such as β-carotene, lycopene, and antheraxanthin have plenty of scientific and commercial value. The comprehensive investigation of carotenoids drives people to improve and develop all kinds of analytical techniques to approach or even achieve “versatile” analysis. The metabolic engineering efforts in plants and algae have progressed rapidly, aiming to enable the use of plants and algae as “cell factories” for producing specific or novel carotenoids, such as β-carotene (provitamin A) in Gold rice, while the emerging technologies of metabolomics support it by providing comprehensive analysis of carotenoids biochemical characterizations. This review describes metabolomics as a high-throughput platform to study carotenoids, including the engineering methods in the plants or algae, the bioinformatics for metabolomics, and the metabolomics of carotenoids in engineered cell factory. Modern systems biology tools, together with the development of genomics and metabolomics databases, will dramatically facilitate the advancement of our knowledge in gene-to-metabolite networks in plants. Metabolomics accompanying genomics, transcriptomics, and proteomics as well as bioinformatics facilitate metabolic engineering efforts towards designing superior biocatalysts in cell factories. Ongoing advances in biological techniques coupled with crucial metabolic networks will further promote plants and algae as attractive platforms for the production of numerous high-value compounds such as carotenoids.

Keywords

Carotenoids Bioinformatics Target analysis Metabolic profiling Metabolic fingerprinting Metabolomics Metabolomic analysis techniques 

Notes

Acknowledgement

This project was supported by the National Natural Foundation of China (Grant 30870025).

References

  1. Bouvier F, d’Harlingue A, Backhaus RA, Kumagai MH, Camara B (2000) Identification of neoxanthin synthase as a carotenoid cyclase paralog. Eur J Biochem 267:6346–6352PubMedGoogle Scholar
  2. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids handbook. Birkhäuser, BaselGoogle Scholar
  3. Broeckling C, Reddy I, Duran A, Zhao X, Sumner L (2006) MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. Anal Chem 78:4334–4341PubMedGoogle Scholar
  4. Burkhardt PK, Beyer P, Wunn J, Kloti A, Armstrong GA, Schledz M, von-Lintig J, Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J 11:1071–1078PubMedGoogle Scholar
  5. Castle AL, Fiehn O, Kaddurah-Daouk R, Lindon JC (2006) Metabolomics standards workshop and the development of international standards for reporting metabolomics experimental results. Brief Bioinform 7:159–165PubMedGoogle Scholar
  6. Chen Q, Jiang JG, Wang F (2007) Molecular phylogenies and evolution of crt genes in algae. Crit Rev Biotechnol 27:77–91PubMedGoogle Scholar
  7. Choi HK, Choi YH, Verberne M, Erkelens C, Lefeber AWM, Erkelens C, Verpoorte R (2004) Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H-NMR and multivariate analysis technique. Phytochemistry 65:857–864PubMedGoogle Scholar
  8. Duran AL, Yang J, Wang L, Sumner LW (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19:2283–2293PubMedGoogle Scholar
  9. Etienne S, Bezalel L, Schickler H, Paltiel J, Ben-Amotz A, Shaish A, Perry I (2000) Cosmetic compositions containing carotenoids for prevention of damage resulting from oxidation and exposure to UV light. PCT Int Appl WO 2000013654Google Scholar
  10. Favretto D, Flamini R (2000) Application of electrospray ionization mass spectrometry to the study of grape anthocyanins. Am J Enol Vitic 51:55–64Google Scholar
  11. Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L (2004) Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol 5:763–769PubMedGoogle Scholar
  12. Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171PubMedGoogle Scholar
  13. Fiehn O, Wohlgemuth G, Scholz M (2005) Setup and annotation of metabolomic experiment by intergrating biological and mass spectrometric metadata. In: Ludäscher B, Raschid L (eds) Data integration in the life sciences, vol 3615. Springer Berlin, Heidelberg, pp 224–239Google Scholar
  14. Fiehn O, Kristal B, van Ommen B, Sumner LW, Assuant-Sansone S, Taylor C, Hardy N, Kaddurah-Daouk R (2006) Establishing reporting standards for metabolomic and metabonomic studies: a call for participation. OMICS 10:158–163PubMedGoogle Scholar
  15. Fleming CM, Kowalski BR, Apffel A, Hancock WS (1999) Windowed mass selection method: a new data processing algorithm for liquid chromatography-mass spectrometry data. J Chromatogr A 849:71–85Google Scholar
  16. Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265PubMedGoogle Scholar
  17. Fraser PD, Bramley PM (2006) Metabolic profiling and quantification of carotenoids and related isoprenoids in crop plants. Biotechnol Agric For 57:229–242Google Scholar
  18. Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Application of high performance liquid-chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558PubMedGoogle Scholar
  19. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit specific-manner. Proc Natl Acad Sci U S A 99:1092–1097PubMedPubMedCentralGoogle Scholar
  20. Fraser PD, Bramley PM, Enfissi E (2006) Genetic engineering of carotenoid formation in tomato. Phytochem Rev 5:59–65Google Scholar
  21. Fraser PD, Enfissi E, Goodfellow M, Eguchi T, Bramley PM (2007) Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant J 49:552–564PubMedGoogle Scholar
  22. Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2007) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145Google Scholar
  23. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down S, Chalmers RA (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids—potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun Mass Spectrom 13:279–284PubMedGoogle Scholar
  24. Hallmann A (2007) Algal transgenics and biotechnology. Transgenic Plant J 1:81–98Google Scholar
  25. Hao CX (2007) The blooming need of the carotenoids. World, Farm Produce Market Weekly 26:40Google Scholar
  26. Jayaraj J, Devlin R, Punja Z (2008) Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res 17:489–501PubMedGoogle Scholar
  27. Jenkins H, Hardy N, Beckmann M, Draper J, Smith A, Taylor J, Fiehn O, Goodacre R, Bino R, Hall R, Kopka J, Lane G, Lange B, Liu J, Mendes P, Nikolau B, Oliver S, Paton N, Rhee S, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner L, Wang T, Walsh S, Wurtele E, Kell D (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat Biotechnol 22:1601–1606PubMedGoogle Scholar
  28. Johnson HE, Broadhurst D, Kell DB, Theodorou MK, Merry RJ, Griffith GM (2004) High-throughput metabolic fingerprinting of legume silage fermentations via Fourier transform infrared spectroscopy and chemometrics. Appl Environ Microbiol 70:1583–1592PubMedPubMedCentralGoogle Scholar
  29. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280PubMedPubMedCentralGoogle Scholar
  30. Katajamaa M, Miettinen J, Oresic M (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636PubMedGoogle Scholar
  31. Keseler IM, Collado-Vides J, Gama-Castro S, Ingraham J, Paley S, Paulsen IT, Peralta-Gil M, Karp PD (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33:D334–D337PubMedGoogle Scholar
  32. Khoo SHG, Al-Rubeai M (2007) Metabolomics: an emerging tool for understanding metabolic systems. Syst Biol 31:237–273Google Scholar
  33. Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 32:D438–D442PubMedPubMedCentralGoogle Scholar
  34. Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RIL, Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics 272:470–479PubMedGoogle Scholar
  35. Lin CH, Chen BH (2003) Determination of carotenoids in tomato juice by liquid chromatography. J Chromatogr A 1012:103–109PubMedGoogle Scholar
  36. Longo L, Vasapollo G (2005) Anthocyanins from bay (Laurus nobilis L.) berries. J Agric Food Chem 53:8063–8067PubMedGoogle Scholar
  37. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167Google Scholar
  38. Marja OCK, Suvi T, Häkkinen RH (2007) Metabolic engineering of the alkaloid biosynthesis in plants: functional genomics approaches. Appl Plant Metab Eng 45:109–127Google Scholar
  39. Marz U (2005) The global market for carotenoids. Business Communications Company Inc., CTGoogle Scholar
  40. Mashego MR, Rumbold K, Mey MD, Vandamme E, Soetaert W, Heijnen JJ (2007) Microbial metabolomics: past, present and future methodologies. Biotechnol Lett 29:1–16PubMedPubMedCentralGoogle Scholar
  41. Mattoli L, Cangi F, Maidecchi A, Ghiara C, Ragazzi E, Tubaro M, Stella L, Tisato F, Traldi P (2006) Metabolomic fingerprinting of plant extracts. J Mass Spectrom 41:1534–1545PubMedGoogle Scholar
  42. Mehrotra B, Mendes P (2006) Bioinformatics approaches to integrate metabolomics and other systems biology data. Plant Metab 57:105–115Google Scholar
  43. Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460PubMedPubMedCentralGoogle Scholar
  44. Oksman-Caldentey MK, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9:433–440PubMedGoogle Scholar
  45. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378PubMedGoogle Scholar
  46. Pendon ZD, Sullivan JO, van der Hoef I, Lugtenburg J, Cua A, Bocian DF, Birge RR, Frank HA (2005) Stereoisomers of carotenoids: spectroscopic properties of locked and unlocked cis-isomers of spheroidene. Photosynth Res 86:5–24PubMedGoogle Scholar
  47. Price KE, Lucas LH, Larive CK (2004) Analytical applications of NMR diffusion measurements. Anal Bioanal Chem 378:1405–1407PubMedGoogle Scholar
  48. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216PubMedGoogle Scholar
  49. Rao LG, Mackinnon ES, Josse RG, Murray TM, Strauss A, Rao AV (2006) Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women. Osteoporos Int 18:109–115PubMedGoogle Scholar
  50. Rissanen T, Voutilainen S, Nyyssönen K, Salonen JT (2002) Lycopene, atherosclerosis, and coronary heart disease. Exp Biol Med 227:900–907Google Scholar
  51. Roessner U, Willmitzer L, Fernie AR, Luedemann A, Brust D, Fiehn O, Linke T (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13:11–29PubMedPubMedCentralGoogle Scholar
  52. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of betacarotene and lycopene content in tomato fruit. Plant J 24:413–420PubMedGoogle Scholar
  53. Rozzi NL, Singh RK, Vierling RA, Watkins BA (2002) Supercritical fluid extraction of lycopene from tomato processing byproducts. J Agric Food Chem 50:2638–2643PubMedGoogle Scholar
  54. Sander LC, Sharpless KE, Pursch M (2000) C30 stationary phases for the analysis of food by liquid chromatography. J Chromatogr A 880:189–202PubMedGoogle Scholar
  55. Sansone SA, Schober D, Atherton HJ, Fiehn O, Jenkins H, Rocca-Serra P, Rubtsov DV, Spasic I, Soldatova L, Taylor C, Tseng A, Viant MR (2007) Metabolomics standards initiative: ontology working group work in progress. Metabolomics 3:249–256Google Scholar
  56. Schomburg I, Chang A, Ebeling C, Gremse M, Heldt C, Huhn G, Schomburg D (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433PubMedPubMedCentralGoogle Scholar
  57. Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J (1994) Dietary carotenoids, vitamin A, C and E, and advanced age-related macular degeneration. JAMA 272:1413–1420PubMedGoogle Scholar
  58. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412PubMedGoogle Scholar
  59. Shulaev V (2006) Metabolomics technology and bioinformatics. Brief Bioinform 7:128–139PubMedGoogle Scholar
  60. Sumner LW, Urbanczyk-Wochniak Ewa, Broeckling CD (2008) Metabolomics data analysis, visualization, and integration. In: Edwards D (ed) Plant bioinformatics: methods and protocols, vol 406, Methods in molecular biology. Humana Press, Totowa, NJ, pp 409–436Google Scholar
  61. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller L, Rhee S, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939PubMedGoogle Scholar
  62. Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for non-targeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137PubMedPubMedCentralGoogle Scholar
  63. Villas-Bôas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23:385–386PubMedGoogle Scholar
  64. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41:1077–1093Google Scholar
  65. Windig W, Phalp JM, Payne AW (1996) A noise and background reduction methods for component detection in liquid chromatography/mass spectrometry. Anal Chem 68:3602–3606Google Scholar
  66. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447PubMedGoogle Scholar
  67. Yang Y, Engin L, Wurtele ES, Cruz-Neira C, Dickerson JA (2005) Integration of metabolic networks and gene expression in virtual reality. Bioinformatics 21:3645–3650PubMedGoogle Scholar
  68. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305PubMedGoogle Scholar
  69. Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–360PubMedGoogle Scholar
  70. Yi CB, Shi J, Xue SJ, Jiang YM, Li D (2008) Effects of supercritical fluid extraction parameters on lycopene yield and antioxidant activity. Food Chem 113:1088–1094Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.College of Food and BioengineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations