Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Understanding the industrial application potential of lactic acid bacteria through genomics

  • 910 Accesses

  • 37 Citations


Lactic acid bacteria (LAB) are a heterogeneous group of bacteria contributing to various industrial applications, ranging from food and beverage fermentation, bulk and fine chemicals production to pharmaceuticals manufacturing. Genome sequencing is booming; hitherto, 25 genomes of LAB have been published and many more are in progress. Based on genomic content of LAB, this review highlights some findings related to applications revealed by genomics and functional genomics analyses. Finally, this review summarizes mathematical modeling strategies of LAB in the context of genomics, to further our understanding of industrial related features.

This is a preview of subscription content, log in to check access.


  1. Alpert CA, Crutz-Le Coq AM, Malleret C, Zagorec M (2003) Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli. Appl Environ Microbiol 69:5574–5584

  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M et al (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912

  3. An HY, Miyamoto T (2006) Cloning and sequencing of plasmid pLC494 isolated from human intestinal Lactobacillus casei: construction of an Escherichia coliLactobacillus shuttle vector. Plasmid 55:128–134

  4. Axelsson L, Lindstad G, Naterstad K (2003) Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120

  5. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB, Pfeiler EA, O'Flaherty S, Buck BL, Dobson A, Duong T et al (2008) Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 74:4610–4625

  6. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100:8957–8962

  7. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR (2006) Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci U S A 103:3816–3821

  8. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

  9. Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

  10. Borodina I, Nielsen J (2005) From genomes to in silico cells via metabolic networks. Curr Opin Biotechnol 16:350–355

  11. Boucher I, Parrot M, Gaudreau H, Champagne CP, Vadeboncoeur C, Moineau S (2002) Novel food-grade plasmid vector based on melibiose fermentation for the genetic engineering of Lactococcus lactis. Appl Environ Microbiol 68:6152–6161

  12. Bron PA, Molenaar D, de Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100:728–738

  13. Bryan EM, Bae T, Kleerebezem M, Dunny GM (2000) Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183–190

  14. Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich DS, Maguin E (2005) Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics 5:4794–4807

  15. Bulik S, Grimbs S, Huthmacher C, Selbig J, Holzhutter HG (2009) Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws—a promising method for speeding up the kinetic modelling of complex metabolic networks. FEBS J 276:410–424

  16. Burgess C, O'Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777

  17. Callanan M, Kaleta P, O'Callaghan J, O'Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T et al (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735

  18. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 87:113–130

  19. Chagnaud P, Chan Kwo Chion CK, Duran R, Naouri P, Arnaud A, Galzy P (1992) Construction of a new shuttle vector for Lactobacillus. Can J Microbiol 38:69–74

  20. Chaillou S, Champomier-Verges MC, Cornet M, Crutz-Le Coq AM, Dudez AM, Martin V, Beaufils S, Darbon-Rongere E, Bossy R, Loux V et al (2005) The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol 23:1527–1533

  21. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM, Parkhill J, Flynn S, O'Sullivan GC, Collins JK et al (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A 103:6718–6723

  22. Covert MW, Palsson BO (2002) Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem 277:28058–28064

  23. Covert MW, Palsson BO (2003) Constraints-based models: regulation of gene expression reduces the steady-state solution space. J Theor Biol 221:309–325

  24. Covert MW, Xiao N, Chen TJ, Karr JR (2008) Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics 24:2044–2050

  25. Cox SJ, Shalel Levanon S, Bennett GN, San KY (2005) Genetically constrained metabolic flux analysis. Metab Eng 7:445–456

  26. Crutz-Le Coq AM, Zagorec M (2008) Vectors for lactobacilli and other Gram-positive bacteria based on the minimal replicon of pRV500 from Lactobacillus sakei. Plasmid 60:212–220

  27. de Ruyter PG, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter I, de Vos WM (1996a) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434–3439

  28. de Ruyter PG, Kuipers OP, de Vos WM (1996b) Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667

  29. de Ruyter PG, Kuipers OP, Meijer WC, de Vos WM (1997) Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat Biotechnol 15:976–979

  30. De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

  31. Derzelle S, Bolotin A, Mistou MY, Rul F (2005) Proteome analysis of Streptococcus thermophilus grown in milk reveals pyruvate formate-lyase as the major upregulated protein. Appl Environ Microbiol 71:8597–8605

  32. Desiere F, Lucchini S, Canchaya C, Ventura M, Brussow H (2002) Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 82:73–91

  33. Dickely F, Nilsson D, Hansen EB, Johansen E (1995) Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol 15:839–847

  34. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006a) Lactobacillus brevis ATCC 367. In: JGI. Available via DIALOG. http://genome.jgi-psf.org/finished_microbes/lacbr/lacbr.home.html. Accessed 28 Apr 2009

  35. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006b) Lactobacillus casei ATCC 334. In: JGI. Available via DIALOG. http://genome.jgi-psf.org/draft_microbes/lacca/lacca.home.html. Accessed 28 Apr 2009

  36. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006c) Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293. In: JGI. Available via DIALOG. http://genome.jgi-psf.org/finished_microbes/leume/leume.home.html. Accessed 28 Apr 2009

  37. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006d) Pediococcus pentosaceus ATCC 25745. In: JGI. Available via DIALOG. http://genome.jgi-psf.org/finished_microbes/leume/pedpe.home.html. Accessed 28 Apr 2009

  38. Dubchak I, Grigoriev I, Shabalov I, Cantor MN, Dusheyko S, Hornick L, Hugenholtz P, Korzeniewski F, Minovitsky S, Nikitin R and others (2006e) Streptococcus thermophilus LMD-9. In: JGI. Available via DIALOG. http://genome.jgi-psf.org/finished_microbes/strth/strth.home.html. Accessed 28 Apr 2009

  39. Emond E, Lavallee R, Drolet G, Moineau S, LaPointe G (2001) Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis. Appl Environ Microbiol 67:1700–1709

  40. Fang F, Flynn S, Li Y, Claesson MJ, van Pijkeren JP, Collins JK, van Sinderen D, O'Toole PW (2008) Characterization of endogenous plasmids from Lactobacillus salivarius UCC118. Appl Environ Microbiol 74:3216–3228

  41. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

  42. Frazier CL, Filippo JS, Lambowitz AM, Mills DA (2003) Genetic manipulation of Lactococcus lactis by using targeted group II introns: Generation of stable insertions without selection. Appl Environ Microbiol 69:1121–1128

  43. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

  44. Gaudu P, Vido K, Cesselin B, Kulakauskas S, Tremblay J, Rezaiki L, Lamberret G, Sourice S, Duwat P, Gruss A (2002) Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek 82:263–269

  45. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

  46. Gitton C, Meyrand M, Wang J, Caron C, Trubuil A, Guillot A, Mistou MY (2005) Proteomic signature of Lactococcus lactis NCDO763 cultivated in milk. Appl Environ Microbiol 71:7152–7163

  47. Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828

  48. Hashiba H, Takiguchi R, Ishii S, Aoyama K (1990) Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agric Biol Chem 54:1537–1541

  49. Hayes F, Daly C, Fitzgerald GF (1990) Identification of the minimal replicon of Lactococcus lactis subsp. lactis UC317 Plasmid pCI305. Appl Environ Microbiol 56:202–209

  50. Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin ERul F (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073

  51. Hoefnagel MH, Starrenburg MJ, Martens DE, Hugenholtz J, Kleerebezem M, Van S II, Bongers R, Westerhoff HV, Snoep JL (2002) Metabolic engineering of lactic acid bacteria, the combined approach: kinetic modelling, metabolic control and experimental analysis. Microbiology 148:1003–1013

  52. Holzapfel WHN, Wood BJ (1998) The genera of lactic acid bacteria. Blackie Academic & Professional, London

  53. Hoppe A, Hoffmann S, Holzhutter HG (2007) Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks. BMC Syst Biol 1:23

  54. Horn N, Wegmann U, Narbad A, Gasson MJ (2005) Characterisation of a novel plasmid p9785S from Lactobacillus johnsonii FI9785. Plasmid 54:176–183

  55. Hugenholtz J, Sybesma W, Groot MN, Wisselink W, Ladero V, Burgess K, van Sinderen D, Piard JC, Eggink G, Smid EJ et al (2002) Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie Van Leeuwenhoek 82:217–235

  56. Jamshidi N, Palsson BO (2008) Formulating genome-scale kinetic models in the post-genome era. Mol Syst Biol 4:171

  57. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

  58. Jeong SJ, Park JY, Lee HJ, Kim JH (2007) Characterization of pFMBL1, a small cryptic plasmid isolated from Leuconostoc mesenteroides SY2. Plasmid 57:314–323

  59. Kandler O, Weiss N (1986) Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore

  60. Kim JH, Mills DA (2007) Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid 58:275–283

  61. Kim JF, Jeong H, Lee JS, Choi SH, Ha M, Hur CG, Kim JS, Lee S, Park HS, Park YH et al (2008) Complete genome sequence of Leuconostoc citreum KM20. J Bacteriol 190:3093–3094

  62. Klaenhammer TR (2000) Probiotic bacteria: today and tomorrow. J Nutr 130:415S–416S

  63. Klaenhammer TR, Altermann E, Pfeiler E, Buck BL, Goh YJ, O'Flaherty S, Barrangou R, Duong T (2008) Functional genomics of probiotic Lactobacilli. J Clin Gastroenterol 42(Suppl 3 Pt 2):S160–S162

  64. Kleerebezem M, Beerthuyzen MM, Vaughan EE, de Vos WM, Kuipers OP (1997) Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584

  65. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

  66. Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM (1998) Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

  67. Kwon S, Yoo IK, Lee WG, Chang HN, Chang YK (2001) High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng 73:25–34

  68. Lee JH, Halgerson JS, Kim JH, O'Sullivan DJ (2007) Comparative sequence analysis of plasmids from Lactobacillus delbrueckii and construction of a shuttle cloning vector. Appl Environ Microbiol 73:4417–4424

  69. Lambert JM, Bongers RS, Kleerebezem M (2007) Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol 73:1126–1135

  70. Lawerence RC, Thomas TD, Terzaghi BE (1976) Reviews of the progress of dairy science: cheese starters. J Dairy Res 43:141–193

  71. Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862

  72. Li Y, Raftis E, Canchaya C, Fitzgerald GF, van Sinderen D, O'Toole PW (2006) Polyphasic analysis indicates that Lactobacillus salivarius subsp salivarius and Lactobacillus salivarius subsp salicinius do not merit separate subspecies status. Int J Syst Evol Microbiol 56:2397–2403

  73. Li Y, Canchaya C, Fang F, Raftis E, Ryan KA, van Pijkeren JP, van Sinderen D, O'Toole PW (2007) Distribution of megaplasmids in Lactobacillus salivarius and other lactobacilli. J Bacteriol 189:6128–6139

  74. Lin CF, Chung TC (1999) Cloning of erythromycin-resistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors. Plasmid 42:31–41

  75. Lin MY, Harlander S, Savaiano D (1996) Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microbiol Biotechnol 45:484–489

  76. Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74:4590–4600

  77. Luo RY, Liao S, Tao GY, Li YY, Zeng S, Li YX, Luo Q (2006) Dynamic analysis of optimality in myocardial energy metabolism under normal and ischemic conditions. Mol Syst Biol 2:2006.0031

  78. Mahadevan R, Edwards JS, Doyle FJ III (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83:1331–1340

  79. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616

  80. Martin MC, Alonso JC, Suarez JE, Alvarez MA (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66:2599–2604

  81. Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producing lactic acid bacteria. J Food Prot 62:773–777

  82. Mierau I, Kleerebezem M (2005) 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705–717

  83. Mills DA, Rawsthorne H, Parker C, Tamir D, Makarova K (2005) Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol Rev 29:465–475

  84. Min Lee J, Gianchandani EP, Eddy JA, Papin JA (2008) Dynamic analysis of integrated signaling, metabolic, and regulatory networks. PLoS Comput Biol 4:e1000086

  85. Molenaar D, Bringel F, Schuren FH, de Vos WM, Siezen RJ, Kleerebezem M (2005) Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol 187:6119–6127

  86. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T et al (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161

  87. Neu T, Henrich B (2003) New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri. Appl Environ Microbiol 69:1377–1382

  88. Nikerel IE, van Winden WA, van Gulik WM, Heijnen JJ (2006) A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics. BMC Bioinformatics 7:540

  89. Oddone GM, Mills DA, Block DE (2009) Incorporation of nisI-mediated nisin immunity improves vector-based nisin-controlled gene expression in lactic acid bacteria. Plasmid 61(3):151–158

  90. Oliveira A, Nielsen J, Forster J (2005a) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39

  91. Oliveira AP, Nielsen J, Forster J (2005b) Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 5:39

  92. Park J, Lee M, Jung J, Kim J (2005) pIH01, a small cryptic plasmid from Leuconostoc citreum IH3. Plasmid 54:184–189

  93. Pastink MI, Sieuwerts S, de Bok FAM, Janssen PWM, Teusink B, Vlieg JETV, Hugenholtz J (2008) Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. Int Dairy J 18:781–789

  94. Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayre S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

  95. Pavlova SI, Kilic AO, Topisirovic L, Miladinov N, Hatzos C, Tao L (2002) Characterization of a cryptic plasmid from Lactobacillus fermentum KC5b and its use for constructing a stable Lactobacillus cloning vector. Plasmid 47:182–192

  96. Pedersen MB, Garrigues C, Tuphile K, Brun C, Vido K, Bennedsen M, Mollgaard H, Gaudu P, Gruss A (2008) Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 190:4903–4911

  97. Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634

  98. Pieterse B, Leer RJ, Schuren FH, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894

  99. Piskur J, Schnackerz KD, Andersen G, Bjornberg O (2007) Comparative genomics reveals novel biochemical pathways. Trends Genet 23:369–372

  100. Platteeuw C, van Alen-Boerrigter I, van Schalkwijk S, de Vos WM (1996) Food-grade cloning and expression system for Lactococcus lactis. Appl Environ Microbiol 62:1008–1013

  101. Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187:6128–6136

  102. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R et al (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101:2512–2517

  103. Rallu F, Gruss A, Maguin E (1996) Lactococcus lactis and stress. Antonie Van Leeuwenhoek 70:243–251

  104. Russell WM, Klaenhammer TR (2001) Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol 67:4361–4364

  105. Sakai K, Ezaki Y (2006) Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101:457–463

  106. Saulnier DM, Molenaar D, de Vos WM, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73:1753–1765

  107. Serrano LM, Molenaar D, Wels M, Teusink B, Bron P, de Vos W, Smid E (2007) Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1. Microb Cell Fact 6:29

  108. Shearman C, Godon JJ, Gasson M (1996) Splicing of a group II intron in a functional transfer gene of Lactococcus lactis. Mol Microbiol 21:45–53

  109. Shimizu-Kadota M (2001) A method to maintain introduced DNA sequences stably and safely on the bacterial chromosome: application of prophage integration and subsequent designed excision. J Biotechnol 89:73–79

  110. Sieuwerts S, de Bok FA, Hugenholtz J, van Hylckama Vlieg JE (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74:4997–5007

  111. Sijpesteijn A (1970) Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides. Antonie Van Leeuwenhoek 36(348):335–348

  112. Smallbone K, Simeonidis E, Broomhead DS, Kell DB (2007) Something from nothing: bridging the gap between constraint-based and kinetic modelling. FEBS J 274:5576–5585

  113. Smeianov VV, Wechter P, Broadbent JR, Hughes JE, Rodriguez BT, Christensen TK, Ardo Y, Steele JL (2007) Comparative high-density microarray analysis of gene expression during growth of Lactobacillus helveticus in milk versus rich culture medium. Appl Environ Microbiol 73:2661–2672

  114. Sorensen KI, Larsen R, Kibenich A, Junge MP, Johansen E (2000) A food-grade cloning system for industrial strains of Lactococcus lactis. Appl Environ Microbiol 66:1253–1258

  115. Sorvig E, Gronqvist S, Naterstad K, Mathiesen G, Eijsink VG, Axelsson L (2003) Construction of vectors for inducible gene expression in Lactobacillus sakei and L plantarum. FEMS Microbiol Lett 229:119–126

  116. Sorvig E, Skaugen M, Naterstad K, Eijsink VG, Axelsson L (2005) Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system. Microbiology 151:421–431

  117. Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20:666–668

  118. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345

  119. Sudhamani M, Ismaiel E, Geis A, Batish V, Heller KJ (2008) Characterisation of pSMA23, a 3.5 kbp plasmid of Lactobacillus casei, and application for heterologous expression in Lactobacillus. Plasmid 59:11–19

  120. Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076

  121. Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327

  122. Takala TM, Saris PE (2002) A food-grade cloning vector for lactic acid bacteria based on the nisin immunity gene nisI. Appl Microbiol Biotechnol 59:467–471

  123. Tamime AY, Robinson RK (1999) Yoghurt: science and technology. Woodhead, Cambridge

  124. Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F (2003) Lactobacillus reuteri CRL1098 produces cobalamin. J Bacteriol 185:5643–5647

  125. Teresa Alegre M, Rodriguez MC, Mesas JM (2009) Characterization of pRS5: a theta-type plasmid found in a strain of Pediococcus pentosaceus isolated from wine that can be used to generate cloning vectors for lactic acid bacteria. Plasmid 61:130–134

  126. Teusink B, Smid EJ (2006) Modelling strategies for the industrial exploitation of lactic acid bacteria. Nat Rev Microbiol 4:46–56

  127. Teusink B, Wiersma A, Molenaar D, Francke C, de Vos WM, Siezen RJ, Smid EJ (2006) Analysis of growth of Lactobacillus plantarum WCFS1 on a complex medium using a genome-scale metabolic model. J Biol Chem 281:40041–40048

  128. Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

  129. Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81:813–826

  130. Urbach G (1995) Contribution of lactic acid bacteria to flavour compound formation in dairy products. Int Dairy J 5:877–903

  131. van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E (2002) Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 82:187–216

  132. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A et al (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103:9274–9279

  133. van Kranenburg R, Golic N, Bongers R, Leer RJ, de Vos WM, Siezen RJ, Kleerebezem M (2005) Functional analysis of three plasmids from Lactobacillus plantarum. Appl Environ Microbiol 71:1223–1230

  134. Vido K, Le Bars D, Mistou MY, Anglade P, Gruss A, Gaudu P (2004) Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol 186:1648–1657

  135. Voit EO (2008) Modelling metabolic networks using power-laws and S-systems. Essays Biochem 45:29–40

  136. Wegmann U, O'Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP et al (2007) Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270

  137. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274

  138. Whitehead K, Versalovic J, Roos S, Britton RA (2008) Genomic and genetic characterization of the bile stress response of probiotic Lactobacillus reuteri ATCC 55730. Appl Environ Microbiol 74:1812–1819

  139. Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

  140. Wu CM, Lin CF, Chang YC, Chung TC (2006) Construction and characterization of nisin-controlled expression vectors for use in Lactobacillus reuteri. Biosci Biotechnol Biochem Biosci Biotechnol Biochem 70:757–767

  141. Xie Y, Chou LS, Cutler A, Weimer B (2004) DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol 70:6738–6747

Download references


The authors would like to thank Yanhe Zhang and Hongtao Xu for sharing thoughts. This study is supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-G-005), the National Natural Science Foundation of China (30870040), and the National Basic Research Program (2007CB707803). Y. L. is supported by the Hundred Talents Program of the Chinese Academy of Sciences.

Author information

Correspondence to Yin Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, Y., Zhang, Y. & Li, Y. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 83, 597–610 (2009). https://doi.org/10.1007/s00253-009-2034-4

Download citation


  • Genomics
  • Lactic acid bacteria
  • Application