Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

New proteins orthologous to cerato-platanin in various Ceratocystis species and the purification and characterization of cerato-populin from Ceratocystis populicola

  • 347 Accesses

  • 20 Citations


Natural variants of cerato-platanin (CP), a pathogen associated molecular pattern (PAMP) protein produced by Ceratocystis platani (the causal agent of the plane canker stain), have been found to be produced by other four species of the genus Ceratocystis, including five clones of Ceratocystis fimbriata isolated from different hosts. All these fungal strains were known to be pathogenic to plants with considerable importance in agriculture, forestry, and as ornamental plants. The putative premature proteins were deduced on the basis of the nucleotide sequence of genes orthologous to the cp gene of C. platani; the deduced premature proteins of Ceratocystis populicola and Ceratocystis variospora reduced the total identity of all the others from 87.3% to 60.3%. Cerato-populin (Pop1), the CP-orthologous protein produced by C. populicola, was purified and characterized. Pop1 was a well-structured α/β protein with a different percentage of the α-helix than CP, and it self-assembled in vitro in ordered aggregates. Moreover, Pop1 behaved as PAMP, since it stimulated poplar leaf tissues to activate defence responses able to reduce consistently the C. populicola growth.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Anderson M, Bocharova OV, Makarava N, Breydo L, Salnikov VV, Baskakov IV (2006) Polymorphism and ultrastructural organization of prion protein amyloid fibrils: an insight from high resolution atomic force microscopy. J Mol Biol 358:580–596

  2. Baker CJ, Harrington TC, Krauss U, Alfenas AC (2003) Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopatology 93:1274–1284

  3. Barnes I, Gaur A, Burgess T, Roux J, Wingfield BD, Wingfield MJ (2001) Microsatellite markers reflect similar relationship between isolates of the vascular wilt and canker pathogen Ceratocystis fimbriata. Mol Plant Path 2:319–325

  4. Bennici A, Calamassi R, Pazzagli L, Comparini C, Schiff S, Bovelli R, Mori B, Tani C, Scala A (2005) Cytological and ultrastructural responses of Platanus acerifolia (Ait.) Willd. leaves to cerato-platanin, a protein from Ceratocystis fimbriata f. sp. platani. Phytopathol Mediterr 44:153–161

  5. Benson JR, Hare PE (1975) o-Phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci USA 72:619–622

  6. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

  7. Boddi S, Comparini C, Calamassi R, Pazzagli L, Cappugi G, Scala A (2004) Cerato-platanin protein is located in the cell walls of ascospores, conidia and hyphae of Ceratocystis fimbriata f. sp. platani. FEMS Microbiol Lett 233:341–346

  8. Carresi L, Pantera B, Zoppi C, Cappugi G, Oliveira AL, Pertinhez TA, Spisni A, Scala A, Pazzagli (2006) Cerato-platanin, a phytotoxic protein from Ceratocystis fimbriata: expression in Pichia pastoris, purification and characterization. Protein Expr Purif 49:159–167

  9. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

  10. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

  11. Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

  12. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

  13. Engelbrecht CJB, Harrington TA (2005) Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 97:57–69

  14. Engelbrecht CJB, Harrington TC, Steimel J, Capretti P (2004) Genetic variation in eastern North American and putatively introduced populations of Ceratocystis fimbriata f. platani. Mol Ecol 13:2995–3005

  15. Finn RD, Tate J, Mistry J, Coggill PC, Sammut JS, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Research, Database Issue 36:D281–D288

  16. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

  17. Fontana F, Santini A, Salvini M, Pazzagli L, Cappugi G, Scala A, Durante M, Bernardi R (2008) Cerato-platanin treated plane leaves restrict Ceratocystis platani growth and overexpress defence-related genes. J Plant Pathol 90:295–306

  18. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

  19. Gressel J, Meir S, Herschkovitz Y, Al-Ahmad H, Greenspoon I, Olubukola B, Amsellem Z (2007) Approaches to and successes in developing transgenically enhanced mycoherbicides. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. Springer Netherlands, Amsterdam, pp 297–305

  20. Hamberger B, Ellis M, Friedmann M, de Azevedo Souza C, Barbazuk B, Douglas CJ (2007) Genome-wide analyses of phenylpropanoid-related genes in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa: the Populus lignin toolbox and conservation and diversification of angiosperm gene families. Can J Bot 85:1182–1201

  21. Jeong JS, Mitchell TK, Dean RA (2007) The Magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence. FEMS Microbiol Lett 273:157–165

  22. Johnson JA, Harrington TC, Engelbrecht C (2005) Phylogeny and taxonomy of the North American clade of the Ceratocystis fimbriata complex. Mycologia 97:1067–1092

  23. Krebs MR, MacPhee CE, Miller AF, Dunlop IE, Dobson CM, Donald AM (2004) The formation of spherulites by amyloid fibrils of bovine insulin. Proc Natl Acad Sci USA 101:14420–14424

  24. Kulkarni RD, Kelkar HS, Dean RA (2003) An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem Sci 28:118–121

  25. Kurup VP, Banerjee B, Hemmann S, Greenberger PA, Blaser K, Crameri R (2000) Selected recombinant Aspergillus fumigatus allergens bind specifically to IgE in ABPA. Clin Exp Allergy 30:988–993

  26. Kwan AH, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci USA 103:3621–3626

  27. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

  28. Laemnli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

  29. LeVine H (1999) Quantification of the β-sheet amyloid fibril structures with Thioflavin T. Method Enzymol 309:274–284

  30. Mao FL, Su ZC, Olman V, Dam P, Liu ZJ, Xu YN (2006) Mapping of orthologous genes in the context of biological pathways: an application of integer programming. Proc Natl Acad Sci USA 103:129–134

  31. Marcos JF, Mũnoz A, Pérez-Payá E, Misra S, Lopez-García B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46:273–301

  32. Ocasio-Morales RG, Tsopelas P, Harrington TA (2007) Origin of Ceratocystis platani on native Platanus orientalis in Greece and its impact on natural forests. Plant Dis 91:901–904

  33. Oliveira AL, Pazzagli L, Pantera B, Cappugi G, Benedetti CE, Spisni A, Pertinhez TA (2006) 1H, 15N and 13C resonance assignments of cerato-platanin, a phytotoxic protein from Ceratocystis fimbriata. J Biomol NMR 36:50

  34. Oliveira AL, Pazzagli L, Cappugi G, Scala A, Gallo M, Cicero DO, Pantera B, Spisni A, Benedetti CE, Pertinhez TA (2009) The solution structure of cerato-platanin reveals a new fold among the protein fungal elicitors. ChemBioChem, submitted

  35. Pan S, Cole GT (1995) Molecular and biochemical characterization of a Coccidoides immitis-specific antigen. Infect Immun 63:3994–4002

  36. Panconesi A (1999) Canker stain of plane trees: a serious danger to urban plantings in Europe. J Plant Pathol 81:3–15

  37. Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A (1999) Purification of cerato-platanin, a new phytotoxic protein from Ceratocystis fimbriata f. sp. platani. J Biol Chem 274:24959–24964

  38. Pazzagli L, Pantera B, Carresi L, Zoppi C, Pertinhez TA, Spisni A, Tegli S, Scala A, Cappugi G (2006) Cerato-platanin, the first member of a new fungal protein family: cloning, expression and characterization. Cell Biochem Biophys 44:512–521

  39. Pontis RE (1951) A canker disease of the coffee tree in Colombia and Venezuela. Phytopathology 41:178–184

  40. Santini A, Capretti P (2000) Analysis of the Italian population of Ceratocystis fimbriata f. sp. platani using RAPD and minisatellite markers. Plant Pathol 49:461–467

  41. Sbrana F, Bongini L, Cappugi G, Fanelli D, Guarino A, Pazzagli L, Scala A, Vassalli M, Zoppi C, Tiribilli B (2007) Atomic force microscopy images suggest aggregation mechanism in cerato-platanin. Eur Biophys J Biophy 36:727–732

  42. Scala A, Tegli S, Comparini C, Mittempergher L, Scala F, Del Sorbo G (1994) Influence of fungal inoculum on cerato-ulmin production, purification of cerato-ulmin and detection in elm sucker cuttings. Petria 4:53–63

  43. Scala F, Bertelli E, Coppola L, Del Sorbo G, Tegli S, Scala A (1997) Comparative determination of cerato-ulmin on cell surface and in mycelial extracts of pathogenic and non-pathogenic Ophiostoma species. Mycol Res 101:829–834

  44. Scala A, Pazzagli L, Comparini C, Santini A, Tegli S, Cappugi G (2004) Cerato-platanin, an early-produced protein by Ceratocystis fimbriata f. sp. platani, elicits phytoalexin synthesis in host and non-host plants. J Plant Pathol 86:23–29

  45. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

  46. Sharen AL, Krupinski G (1970) Cultural and inoculation studies of Septoria nodorum, cause of Glume Blotch of wheat. Phytopathology 60:1480–1485

  47. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  48. Templeton MD, Rikkerink EHA, Beever RE (1994) Small, cysteine-rich proteins and recognition in fungal–plant interactions. Mol Plant-Microbe Interact 7:320–325

  49. Tuskan GA, DiFazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

  50. Van Wyk M, Al Adawi AO, Khan IA, Deadman ML, Al Jahwari AA, Wingfield BD, Ploetz R, Wingfield MJ (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230

  51. Vargas WA, Djonovic S, Sukno SA, Kenerley CM (2008) Dimerization controls the activity of Fungal elicitors that trigger systemic resistance in plants. J Biol Chem 283:19804–19815

  52. Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

  53. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, London, pp 315–322

  54. Whiteford JR, Spanu PD (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Pathol 3:391–400

  55. Wilson LM, Idnurm A, Howlett BJ (2002) Characterization of a gene (sp1) encoding a secreted protein from Leptosphaeria maculans, the blackleg pathogen of Brassica napus. Mol Plant Pathol 3:487–493

  56. Witthuhn RC, Wingfield BD, Wingfield MJ, Wolfaardt M, Harrington TC (1998) Monophyly of the conifer species in the Ceratocystis coerulescens complex based on DNA sequence data. Mycologia 90:96–101

  57. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

  58. Yang X, Kalluri UC, Jawdy S, Gunter LE, Yin T, Tschaplinski TJ, Weston DJ, Ranjan P, Tuskan GA (2008) The F-box gene family is expanded in herbaceous annual plants relative to woody perennial plants. Plant Physiol 148:1189–1200

  59. Zaparoli G, Cabrera OG, Medrano FJ, Tiburcio R, Lacerda G, Guimarães Pereira G (2009) Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins. Mycol Res 113:61–72

Download references


The work was supported by the Ministero Italiano dell’Università e della Ricerca Scientifica, Progetti di Ricerca di Interesse Nazionale 2005 and 2007 to A. Scala, G. Cappugi, and A. Santini.

Author information

Correspondence to Aniello Scala.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM-1. (PDF 16 kb)

ESM-2. (PDF 113 kb)

ESM-3. (PDF 256 kb)

ESM-4. (PDF 86 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Comparini, C., Carresi, L., Pagni, E. et al. New proteins orthologous to cerato-platanin in various Ceratocystis species and the purification and characterization of cerato-populin from Ceratocystis populicola . Appl Microbiol Biotechnol 84, 309–322 (2009).

Download citation


  • Orthologous genes
  • Populus sp.
  • Circular dichroism
  • PAMP activity
  • Induction of plant resistance