Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway

  • 144 Accesses

  • 6 Citations


Fungal peroxidases and phenoloxidases are widely used in aromatic toxic compounds degradation. Peroxidases, such as lignin peroxidase and manganese peroxidase, as well as laccases are mainly produced by basidiomycetes and to a lower extent by other fungi, such as ascomycetes. Peroxidase-encoding genes have been described and homologous expression has been achieved in basidiomycetes. Heterologous expression has also been achieved in some non-producing peroxidase ascomycetes, like Penicillium and Aspergillus. In this work, heterologous expression of peroxidase-encoding genes, lignin peroxidase, and manganese peroxidase was achieved in a zygomycete producing only phenoloxidases (Amylomyces rouxii), aimed at coupling two different pathways used in nature for PCP removal in only one microbial strain. The ability of PCP removal was assayed with one of the obtained transformants, resulting in increased activity with respect to the ability of the parental strain cultured free of the inducer tyrosine (95% and 45%, respectively, of the initial PCP (12.5 mg L−1) in 120 h, or 100% and 49%, respectively, of the initial PCP after 144 h of liquid culture).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Alleman BC, Logan BE, Gilbertson RL (1992) Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl Environ Microbiol 58:4048–4050

  2. Belinky PA, Flikshtein N, Dosoretz CG (2006) Induction of lignin peroxidase via reactive oxygen species in manganese-deficient cultures of Phanerochaete chrysosporium. Enz Microb Technol 39:222–228

  3. Bradford M (1976) A quick and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  4. Cantoral JM, Diez B, Barredo JL et al (1987) High frequency transformation of Penicillium chrysogenum. Bio/Technology 5:494–497

  5. Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

  6. Conesa A, van de Velde F, van Rantwijk F et al (2001) Expression of the Caldariomyces fumago choloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 276:17635–17640

  7. Conesa A, Jeenes D, Archer DV et al (2002) Calnexin overespression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851

  8. Cserjesi AJ, Jhonson EL (1971) Methylation of pentachlorophenol by Trichoderma virgatum. Canad J Microbiol 18:45–49

  9. Díez B, Alvarez E, Cantoral JM et al (1987) Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5´-phosphate decarboxylase and complementation by the pyr 4 gene of Neurospora crassa. Curr Genet 12:277–282

  10. Ensuncho L, Alvarez-Cuenca M, Legge LR (2005) Removal of aqueous phenol using immobilized enzymes in a bench scale and pilot scale three-phase fluidized bed reactor. Bioproc Biosyst Eng 27:185–191

  11. Fahr K, Wetzstein HG, Gry R et al (1999) Degradation of 2, 4-dichlorophenol and pentachlorophenol by two brown rot fungi. FEMS Microbiol Lett 175:127–132

  12. Gelpke MDS, Mayfield-Gambill M, Gereghino GPL et al (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674

  13. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

  14. Janse BJH, Gaskell J, Akhtar M et al (1998) Expression of Phanerochaete chrysosporium genes encoding lignin peroxidases, manganese peroxidases, and glyoxal oxidase in wood. Appl Environ Microbiol 64:3536–3538

  15. Kapich ANB, Prior A, Botha A et al (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enz Microb Technol 34:187–195

  16. Kumari MR, Yadav S, Yadav KD (2002) Secretion of ligninperoxidase by Penicillium citrinum, Fusarium oxysporum and Aspergillis terreus. Ind J Exp Biol 40:802–806

  17. Kwasniewska K (1981) The degradation of pentachlorophenol by fungus of Fusarium sp. Trace Subs Environ Health 15:392–398

  18. Larrondo LF, Lobos S, Stewart P et al (2001) Isoenzymes multiplicity and characterization of recombinant manganese peroxidases from Ceriporiospsis subvermispora and Phanerochaete chrysosporium. Appl Environ Microbiol 67:2070–2075

  19. León-Santiestebán HH, Bernal RM, Fernández FJ et al (2008) Tyrosinase and peroxidase production by Rhizopus oryzae strain ENHE obtained from pentachlorophenol contaminated soil. J Chem Technol Biotechnol 83:1394–1400

  20. Maarten D, Sollewjn G, Mayfeld-Gambill M et al (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674

  21. Marcial J, Barrios-González J, Tomasini A (2006) Effect of medium composition on pentachlorophenol removal by Amylomyces rouxii in solid-state culture. Process Biochem 41:496–500

  22. Mileski GJ, Bumpus JA, Jurek MA et al (1988) Biodegradation of pentachlorophenol by the white-rot fungi Phanerochaete chrysosporium. Appl Environ Microbiol 54:2885–2889

  23. Montiel AM, Fernández FJ, Marcial J et al (2004) A fungal tyrosinase produced by Amylomyces rouxii involved in pentachlorophenol degradation. Biotechnol Lett 26:1353–1357

  24. Moredo N, Lorenzo M, Domínguez A et al (2003) Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor. World J Microbiol Biotechnol 19:665–669

  25. Necas O, Gabriel M (1980) Ultrastructure of spores of Rhizopus nigricans after repeated freezing and thawing shocks. Folia Microbiol 25:228–232

  26. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

  27. Okeke BC, Paterson A, Smith JE et al (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinus edodes. Appl Environ Microbiol 48:563–569

  28. Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

  29. Rubilar O, Feijoo G, Diez C et al (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:6744–6751

  30. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

  31. Schmidt KR, Chand S, Gostomski PA et al (2005) Fungal inoculum properties and its effect on growth and enzyme activity of Trametes versicolor in soil. Biotechnol Prog 21:377–385

  32. Selinheimo E, Saloheimo M, Ahola E et al (2006) Production and characterization of a secreted, C-terminal processed tyrosinase from the filamentous fungus Thrichoderma reesei. FEBS J 273:4322–4335

  33. Seigle-Murandi F, Steiman R, Benoit-Guyod JL et al (1993) Fungal degradation of pentachlorophenol by micromycetes. J Biotechnol 30:27–35

  34. Stewart P, Whitwam RE, Kersten PJ et al (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Environ Microbiol 62:860–864

  35. Sugano Y, Nakano R, Sasaki K et al (2000) Efficient heterologous expression in Aspergillus oryzae of a unique dye-decolorizing peroxidase, DyP, of Geotrichum candidum Dec1. Appl Environ Microbiol 66:1754–1758

  36. Takaya N, Yanani K, Horiuchi H et al (1994) Cloning and characterization of two 3-phosphoglycerate kinase genes of Rhizopus niveus and heterologous gene expression using their promoters. Curr Genet 25:524–530

  37. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Wood WA, Kellog ST (eds) Methods in Enzymology, vol 16. Academic, New York, pp 238–249

  38. Tomasini-Campocosio A, Villareal Arellanos H, Barrios-González J (1996) Resistencia de una cepa de Rhizopus sp. al crecer en medios conteniendo pentaclorofenol. Av Ing Quím 6:36–40

  39. Tomasini A, Flores V, Cortés D et al (2001) An isolate of Rhizopus nigricans capable of tolerating and removing pentachlorophenol. World J Microbiol Biotechnol 17:201–205

  40. Ullah MA, Kadhim H, Rastall RA et al (2000) Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents. Appl Microbiol Biotechnol 54:832–837

  41. Ürek RO, Pazarlioğlu NK (2005) Production and stimulation of manganese peroxidase by immobilized Phanerochaete chrysosporium. Process Biochem 40:83–87

  42. Yamada K, Akiba Y, Shibuya T et al (2005) Water purification through bioconversion of phenol compounds by tyrosinase and chemical adsorption by chitosan beads. Biotechnol Prog 21:823–829

  43. Yanai K, Horiuchi H, Takagi M et al (1991) Transformation of Rhizopus niveus using a bacterial blasticidin S resistance gene as a dominant selectable marker. Curr Genet 19:221–226

Download references


This work was supported by National Council of Science and Technology, Mexico (CONACyT) grant 31572-B. Alba Mónica Montiel was supported by a fellowship from CONACyT, Mexico. We are also grateful to Dr. Daniel Cullen, University of Wisconsin (USA), for kindly donating the P. chrysosporium lignin and manganese peroxidases containing plasmids.

Author information

Correspondence to F. J. Fernández.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Montiel-González, A.M., Fernández, F.J., Keer, N. et al. Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway. Appl Microbiol Biotechnol 84, 335–340 (2009). https://doi.org/10.1007/s00253-009-1981-0

Download citation


  • PCP removal
  • Peroxidases
  • Tyrosinase
  • Zygomycetes