Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production

  • 384 Accesses

  • 28 Citations


We evaluated the effects of the main auxin phytohormone, indole-3-acetic acid (IAA), on the central metabolism of Sinorhizobium meliloti 1021. We either treated S. meliloti 1021 wild-type cells with 0.5 mM IAA, 1021+, or use a derivative, RD64, of the same strain harboring an additional pathway for IAA biosynthesis (converting tryptophan into IAA via indoleacetamide). We assayed the activity of tricarboxylic acid cycle (TCA) key enzymes and found that activity of citrate synthase and α-ketoglutarate dehydrogenase were increased in both 1021+ and RD64 as compared to the wild-type strain. We also showed that the intracellular acetyl-CoA content was enhanced in both RD64 and 1021+ strains when compared to the control strain. The activity of key enzymes, utilizing acetyl-CoA for poly-β-hydroxybutyrate (PHB) biosynthesis, was also induced. The PHB level measured in these cells were significantly higher than that found in control cells. Moreover, 4-week-long survival experiments showed that 80% of 1021 cells died, whereas 50% of RD64 cells were viable. Medicago truncatula plants nodulated by RD64 (Mt-RD64) showed an induction of both acetylene reduction activity and stem dry weight production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Allenza P, Lessie TG (1982) Pseudomonas cepacia mutants blocked in the Entner–Doudoroff pathway. J Bacteriol 150:1340–1347

  2. Arias A, Cervenansky C, Gardiol A, Martinez-Drets G (1979) Phosphoglucose isomerase mutant of Rhizobium meliloti. J Bacteriol 137:409–414

  3. Becker A, Ruberg S (2003) Sinorhizobium 6kOligo microarray manual, V. 1.1, Department of Genetics, University of Bielefeld

  4. Becker A, Bergès H, Krol E, Bruano C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Küster H, Liebe C, Pühler A, Weidner S, Batut J (2004) Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. Mol Plant Microbe Interact 17:292–303

  5. Bianco C, Imperlini E, Calogero R, Senatore B, Amoresano A, Carpentieri A, Pucci P, Defez R (2006a) Indole-3-acetic acid improves Escherichia coli’s defences to stress. Arch Microbiol 185:373–382

  6. Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R (2006b) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology 152:2421–2431

  7. Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

  8. Camerini S, Senatore B, Imperlini E, Bianco C, Miraglia E, Lonardo E, Defez R (2004) Improve legume yield by phytohormone release from soil bacteria. Legumes for the benefit of agriculture, nutrition and the environment. AEP, Dijon, pp 127–128

  9. Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotino GL, Campion B, Defez R (2008) Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch Microbiol 190:67–77

  10. Cevallos MA, Encarnacion S, Leija A, Mora Y, Mora J (1996) Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-β-hydroxybutyrate. J Bacteriol 178:1646–1654

  11. Crespi M, Frugier F (2008) De novo organ formation from differentiated cells: root nodule organogenesis. Sci Signal 1:re11

  12. de Melo MP, de Lima TM, Pithon–Curi TC, Curi R (2004) The mechanism of indole acetic acid cytotoxicity. Toxicol Lett 148:103–111

  13. Defez R (2006) Patent Holder: CNR Deposited on 14/06/2005, Italian Patent Office: n. RM2005A000308. PCT extension n. PCT/IT2006/000449. Method for increasing the survival of bacterial strains of the Rhizobium genus. http://ep.espacenet.com/

  14. Defez R, Spena A (1998) EPO application No. EP98/830674.2. PCT extension n° PCT24190. Method to control gene expression in bacteria, namely Rhizobiaceae, to improve root nodule development, nitrogen fixation and plant biomass production. http://ep.espacenet.com/

  15. Dixon GH, Kornberg HL (1969) Malate synthase from Baker’s yeast. Methods in Enzymol 13:633–634

  16. Duncan MJ, Fraenkel DG (1979) α-Ketoglutarate dehydrogenase mutant of Rhizobium meliloti. J Bacteriol 137:415–419

  17. Dunn MF (1998) Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol Rev 22:105–123

  18. Encarnacion S, Dunn M, Willms K, Mora J (1995) Fermentative and aerobic metabolism in Rhizobium etli. J Bacteriol 177:3058–3066

  19. Fougere F, Le Rudulier D, Streeter JG (1991) Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiol 96:1228–1236

  20. Fraenkel DG, Levisohn SR (1967) Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 93:1571–1578

  21. Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280–300

  22. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178:7159–7166

  23. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cardieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy G, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman R, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Psck M, Pohl TM, Potetelle D, Pumelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

  24. Gardiol A, Arias A, Cervenansky C, Martinez-Drets G (1982) Succinate dehydrogenase mutant of Rhizobium meliloti. J Bacteriol 151:1621–1623

  25. Grzemski W, Akowski JP, Kahn ML (2005) Probing the Sinorhizobium meliloti–alfalfa symbiosis using temperature-sensitive and impaired-function citrate synthase mutants. Mol Microbe Plant Interact 18:134–141

  26. Hayat MA (2000) Principles and techniques of electron microscopy biological applications, 4th edn. Cambridge University Press. ISBN-13: 978-0521632874

  27. Hirsch AM, Bang M, Ausubel FM (1983) Ultrastructural analysis of ineffective alfalfa nodules formed by nif: Tn5 mutants of Rhizobium meliloti. J Bacteriol 155:367–380

  28. Hooykaas PJJ, Clapwicjk PM, Nuti MP, Schilperoort RA, Roersch A (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent Agrobacteria and to Rhizobium ex-planta. J Gen Microbiol 98:477–484

  29. Irigoyen JJ, Sanchez-Diaz M, Emerich DW (1990) Carbon metabolism enzymes of Rhizobium meliloti cultures and bacteroids and their distribution within the alfalfa nodule. Appl Environ Microbiol 56:2587–2589

  30. Jensen HL (1942) Nitrogen fixation in leguminous plant. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium. Aust Proc Linn Soc 66:98–108

  31. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the SinorhizobiumMedicago model. Nat Rev Microbiol 5:619–633

  32. Kittell BL, Helinski DR, Ditta GS (1989) Aromatic aminotransferase activity and indoleacetic acid production in Rhizobium meliloti. J Bacteriol 171:5458–5466

  33. Krishnan HB, Kim WS, Sun-Hyung J, Yong Kim K, Jiang G (2003) Citrate synthase mutants of Sinorhizobium fredii USDA257 form ineffective nodules with aberrant ultrastructure. Appl Environ Microbiol 69:3561–3568

  34. Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–42

  35. Ling KH, Paetkau V, Marcus F, Lardy HA (1969) Phosphofructokinase. Methods Enzymol 9:425–429

  36. Lodwing EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole PS (2005) Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol Plant Microbe Interact 18:67–74

  37. McDermott TR, Kahn ML (1992) Cloning and mutagenesis of the Rhizobium meliloti isocitrate dehydrogenase gene. J Bacteriol 174:4790–4797

  38. McDermott TR, Griffith SM, Vance CP, Graham PH (1989) Carbon metabolism in Bradyrhizobium bacteroids. FEMS Microbiol Rev 63:327–340

  39. McFadden AB (1969) Isocitrate lyase. Methods in Enzymol 13:163–165

  40. Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

  41. Mezzetti B, Landi L, Pandolfini T, Spena A (2004) The defH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry. BMC Biotechnology 4:4. Published online

  42. Mortimer MW, McDermott TR, York GM, Walker GC, Kahn M (1999) Citrate synthase mutants of Sinorhizobium meliloti are ineffective and have altered cell surface polysaccharides. J Bacteriol 181:7608–761

  43. Mulongoy K, Elkan GH (1977) Glucose catabolism in two derivatives of a Rhizobium japonicum strain differing in nitrogen-fixing efficiency. J Bacteriol 131:179–187

  44. Paau AS, Cowles JL (1978) Development of bacteroids in alfalfa (Medicago sativa) nodules. Plant Physiol 62:526–530

  45. Palacios JM, Murillo J, Leyva A, Ditta G, Argueso TR (1990) Differential expression of hydrogen uptake (hup) genes in vegetative and symbiotic cells of Rhizobium leguminosarum. Mol Gen Genet 221:363–370

  46. Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A (2000) The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter. Mol Microbiol 35:1326–1334

  47. Pandolfini T, Rotino GL, Camerini S, Defez R, Spena A (2002) Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes. BMC Biotechnology 2:1. Published online

  48. Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21

  49. Poole P, Allaway D (2000) Carbon and nitrogen metabolism in Rhizobium. Adv Microb Physiol 43:117–163

  50. Povolo S, Casella S (2000) A critical role for aniA in energy–carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti. Arch Microbiol 174:42–49

  51. Prusty R, Grisafi P, Fink GR (2004) The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:4153–4157

  52. Reed LJ, Mukherjee BB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. Methods Enzymol 13:55–61

  53. Salminen SO, Streeter JG (1990) Factors contributing to the accumulation of glutamate in Bradyrhizobium japonicum bacteroids under microaerobic conditions. J Gen Microbiol 136:2119–2126

  54. Saubert W, Weicker H (1969) Pyruvate carboxylase from Pseudomonas. Methods Enzymol 13:258–262

  55. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem J 134:225–238

  56. Smyth GK, Speed TP (2003) Normalization of cDNA microarray data. Methods 31:265–273

  57. Smyth GK, Michaud J, Scott H (2005) The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21:2067–2075

  58. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism–plant signaling. FEMS Microbiol Rev 31:425–448

  59. Stowers MD (1985) Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39:89–108

  60. Urban JE, Dazzo FB (1982) Succinate-induced morphology of Rhizobium trifolii 0403 resembles that of bacteroids in clover nodules. Appl Environ Microbiol 44:219–226

  61. Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306

  62. Walshaw D, Wilkinson A, Mundy M, Smith M, Poole PS (1997) Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology 143:2209–2221

  63. Weitzman PDJ (1969) Citrate synthase from Escherichia coli. Methods Enzymol 13:22–26

Download references


This work was supported by the European Union INCO-DEV SONGLINES grant, project ICA4-CT-2001-10059. We wish to thank Prof. Angela Amoresano and Prof. Piero Pucci, from the University of Naples Federico II, for the IAA determination.

Author information

Correspondence to Roberto Defez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imperlini, E., Bianco, C., Lonardo, E. et al. Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl Microbiol Biotechnol 83, 727–738 (2009). https://doi.org/10.1007/s00253-009-1974-z

Download citation


  • Cell survival
  • PHB
  • TCA
  • Nitrogen fixation
  • Stem dry weight
  • Starch