Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biotechnological production of l-ribose from l-arabinose

  • 505 Accesses

  • 29 Citations


l-Ribose is a rare and expensive sugar that can be used as a precursor for the production of l-nucleoside analogues, which are used as antiviral drugs. In this work, we describe a novel way of producing l-ribose from the readily available raw material l-arabinose. This was achieved by introducing l-ribose isomerase activity into l-ribulokinase-deficient Escherichia coli UP1110 and Lactobacillus plantarum BPT197 strains. The process for l-ribose production by resting cells was investigated. The initial l-ribose production rates at 39°C and pH 8 were 0.46 ± 0.01 g g−1 h−1 (1.84 ± 0.03 g l−1 h−1) and 0.27 ± 0.01 g g−1 h−1 (1.91 ± 0.1 g l−1 h−1) for E. coli and for L. plantarum, respectively. Conversions were around 20% at their highest in the experiments. Also partially purified protein precipitates having both l-arabinose isomerase and l-ribose isomerase activity were successfully used for converting l-arabinose to l-ribose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Aarnikunnas J, von Weymarn N, Rönnholm K, Leisola M, Palva A (2003) Metabolic engineering of Lactobacillus fermentum for production of mannitol and pure L-lactic acid and pyruvate. Biotechnol Bioeng 82:653–663

  2. Adachi O, Fujii Y, Ano Y, Moonmangmee D, Toyama H, Shinagawa E, Theeragool G, Lotong N, Matsushita K (2001) Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 65:115–125

  3. Ahmed Z, Shimonishi T, Bhuiyan SH, Utamura M, Takada G, Izumori K (1999) Biochemical preparation of L-ribose and L-arabinose from ribitol: a new approach. J Biosci Bioeng 88:444–448

  4. Cho EA, Lee DW, Cha YH, Lee SH, Jung HC, Pan JG, Pyun YR (2007) Characterization of a novel D-lyxose isomerase from Cohnella laevoribosii RI-39 sp. nov. J Bacteriol 189:1655–1663

  5. De Muynck C, Pereira C, Soetaert W, Vandamme E (2006) Dehydrogenation of ribitol with Gluconobacter oxydans: production and stability of L-ribulose. J Biotechnol 125:408–415

  6. De Muynck C, Van der Borght J, De Mey M, De Maeseneire SL, Van Bogaert IN, Beauprez J, Soetaert W, Vandamme E (2007) Development of a selection system for the detection of L-ribose isomerase expressing mutants of Escherichia coli. Appl Microbiol Biotechnol 76:1051–1057

  7. Doten RC, Mortlock RP (1985) Production of D- and L-xylulose by mutants of Klebsiella pneumoniae and Erwinia uredovora. Appl Environ Microbiol 49:158–162

  8. Eijsink VG, Brurberg MB, Middelhoven PH, Nes IF (1996) Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237

  9. Englesberg E (1961) Enzymatic characterization of 17 L-arabinose negative mutants of Escherichia coli. J Bacteriol 81:996–1006

  10. Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

  11. Hayn M, Steiner W, Klinger R, Steinmüller H, Sinner M, Esterbauer H (1993) Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, UK, pp 33–72

  12. Heath EC, Horecker BL, Smyrniotis PZ, Takagi Y (1958) Pentose fermentation by Lactobacillus plantarum. II. L-arabinose isomerase. J Biol Chem 231:1031–1037

  13. Helanto M, Kiviharju K, Leisola M, Nyyssölä A (2007) Metabolic engineering of Lactobacillus plantarum for production of L-ribulose. Appl Environ Microbiol 73:7083–7091

  14. Holo H, Nes IF (1989) High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123

  15. Jumppanen J, Nurmi J, Pastinen O (2000) High purity L-ribose from L-arabinose. WO0029417

  16. Jung ME, Xu Y (1997) Efficient synthesis of L-ribose and 2-deoxy L-ribose from D-ribose and L-arabinose. Tetrahedron Lett 38:4199–4202

  17. Kawaguchi T, Hara M, Ueda M (2001) Process for producing L-ribose. EP1083234

  18. Kuipers OP, de Ruyter PG, Kleerebezen M, de Vos WM (1998) Quorum sensing controlled gene expression in lactic acid bacteria. J Biotechnol 64:15–21

  19. Kylmä AK, Granström T, Leisola M (2004) Growth characteristics and oxidative capacity of Acetobacter aceti IFO 3281: implications for L-ribulose production. Appl Microbiol Biotechnol 63:584–591

  20. Mizanur RM, Takada G, Izumori K (2001) Cloning and characterization of a novel gene encoding L-ribose isomerase from Acinetobacter sp. strain DL-28 in Escherichia coli. Biochim Biophys Acta 1521:141–145

  21. Nyyssölä A, Pihlajaniemi A, Palva A, von Weymarn N, Leisola M (2005) Production of xylitol from D-xylose by recominant Lactococcus lactis. J Biotechnol 118:55–66

  22. Seo M, An J, Shim JH, Kim G (2003) One-pot inversion of D-mannono-1,4-lactone for the practical synthesis of L-ribose. Tetrahedron Lett 44:3051–3052

  23. Shi Z-D, Yang B-H, Wu Y-L (2001) A stereospecific synthesis of L-ribose and L-ribosides from D-galactose. Tetrahedron Lett 42:7651–7653

  24. Shimonishi T, Izumori K (1996) A new enzyme, L-ribose isomerase from Acinetobacter sp. strain DL-28. J Ferment Bioeng 81:493–497

  25. Sorvig E, Mathiesen G, Naterstad K, Eijsink VGH, Axelsson L (2005) High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology 151:2439–2449

  26. Spagnuolo M, Crecchio C, Pizzigallo MDR, Ruggiero P (1999) Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration. Biotechnol Bioeng 64:685–691

  27. Takahashi H, Iwai Y, Hitomi Y, Igegami S (2002) Novel synthesis of L-ribose from D-mannono-1,4-lactone. Organic Lett 4:2401–2403

  28. Wang P, Hong JH, Cooperwood JS, Chu CK (1998) Recent advances in L-nucleosides: chemistry and biology. Antiviral Res 40:19–44

  29. Woodyer RD, Wymer NJ, Racine M, Khan SN, Saha BC (2008) Efficient production of L-ribose with a recombinant Escherichia coli biocatalyst. Appl Environ Microbiol 74:2967–2975

  30. Yun M, Moon HR, Kim HO, Choi WJ, Kim Y-C, Park C-S, Jeong LS (2005) A highly efficient synthesis of unnatural L-sugars from D-ribose. Tetrahedron Lett 46:5903–5905

Download references


The authors thank Dr. Ossi Pastinen for excellent advice. Kalle Salonen, Marjaana Rytelä, and Auli Murrola are acknowledged for technical support. The research was funded by the Academy of Finland (210778).

Author information

Correspondence to M. Helanto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Helanto, M., Kiviharju, K., Granström, T. et al. Biotechnological production of l-ribose from l-arabinose. Appl Microbiol Biotechnol 83, 77–83 (2009). https://doi.org/10.1007/s00253-008-1855-x

Download citation


  • l-Ribose
  • l-Arabinose
  • Pentose metabolism
  • Metabolic engineering
  • Lactic acid bacteria