Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Discovery of a pimaricin analog JBIR-13, from Streptomyces bicolor NBRC 12746 as predicted by sequence analysis of type I polyketide synthase gene

  • 250 Accesses

  • 12 Citations


Sequence analysis of ketosynthase domain amplicons from Streptomyces bicolor NBRC 12746T revealed the presence of previously unreported type I polyketide synthases (PKS-I) genes. The clustering of these genes with the reference PKS-1 sequences suggested the possibility to produce a polyene compound similar to pimaricin. Thus, the cultured sample from NBRC 12746T was analyzed for the production of polyene compounds. The strain produced an antifungal compound which displayed the UV absorption spectrum of tetraene macrolides. The structure determination based on the spectroscopic analysis of the purified compound resulted in the identification of a novel pimaricin analog JBIR-13 (1). This study therefore strongly suggested that a careful analysis of PKS-I genes can provide valuable information in the search of novel bioactive compounds within a class predicted from phylogenetic analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Anzai K, Ohno M, Nakashima T, Kuwahara N, Suzuki R, Tamura T, Komaki H, Miyadoh S, Harayama S, Ando K (2008) Taxonomic distribution of Streptomyces species capable of producing bioactive compounds among strains preserved at NITE/NBRC. Appl Microbiol Biotechnol 80:287–295

  2. Ayuso A, Clark D, González I, Salazar O, Anderson A, Genilloud O (2005) A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol Biotechnol 67:795–806

  3. Banskota AH, McAlpine JB, Sørensen D, Ibrahim A, Aouidate M, Piraee M, Alarco AM, Farnet CM Zazopoulos E (2006) Genomic analyses lead to novel secondary metabolites. Part 3. ECO-0501, a novel antibacterial of a new class. J Antibiot (Tokyo) 59:533–542

  4. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

  5. Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

  6. Bock K, Pedersen C (1974) A study of 13CH coupling constants in hexopyranoses. J Chem Soc Perkin II 3:293–297

  7. Ceder O, Hansson B (1977) Pimaricin-VIII structural and configurational studies by electron impact and field desorption mass spectrometry, 13C (25.2 MHz) and 1H (270 MHz)-NMR spectroscopy. Tetrahedron 33:2703–2714

  8. Dornberger K, Fügner R, Bradler G, Thrum H (1971) Tetramycin, a new polyene antibiotic. J Antibiot (Tokyo) 24:172–177

  9. Dornberger K, Voigt D, Ihn W, Vokoun J, Thrum H (1976) Massenspektroskopische untersuchungen an polyenantibiotika. Fragmentierungsverhalten einiger tetraene. Tetrahedron 32:3069–3073

  10. Duplantier AJ, Masamune S (1990) Pimaricin. Stereochemistry and synthesis of its aglycon (pimarolide) methyl ester. J Am Chem Soc 112:7079–7081

  11. Gaudiano G, Bravo P, Quilico A (1966a) The structure of lucensomycin. I. Tetrahedron Lett 30:3559–3565

  12. Gaudiano G, Bravo P, Quilico A, Golding BT, Rickards RW (1966b) The structure of lucensomycin. II. Tetrahedron Lett 30:3567–3571

  13. Ginolhac A, Jarrin C, Robe P, Perriére G, Vogel TM, Simonet P, Nalin R (2005) Type I polyketide synthases may have evolved through horizontal gene transfer. J Mol Evol 60:716–725

  14. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

  15. Jenke-Kodama H, Sandmann A, Müller R, Dittmann E (2005) Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027–2039

  16. Jenke-Kodama H, Börner T, Dittmann E (2006) Natural biocombinatorics in the polyketide synthase genes of the actinobacterium Streptomyces avermitilis. PLoS Comput Biol 2:e132

  17. Komaki H, Harayama S (2006) Sequence diversity of type-II polyketide synthase genes in Streptomyces. Actinomycetologica 20:42–48

  18. Komaki H, Fudou R, Iizuka T, Nakajima D, Okazaki K, Shibata D, Ojika M, Harayama S (2008) PCR detection of type I polyketide synthase genes in myxobacteria. Appl Environ Microbiol 74:5571–5574

  19. Lancelin JM, Beau JM (1990) Stereostructure of pimaricin. J Am Chem Soc 112:4060–4061

  20. McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco AM, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496

  21. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

  22. Patrick JB, Williams RP, Webb JS (1958) Pimaricin. II. The structure of pimaricin. J Am Chem Soc 80:6689

  23. Pawlak J, Sowiński P, Borowski E, Gariboldi P (1995) Stereostructure of perimycin A. J Antibiot (Tokyo) 48:1034–1038

  24. Savic M, Vasiljevic B (2006) Targeting polyketide synthase gene pool within actinomycetes: new degenerate primers. J Ind Microbiol Biotechnol 33:423–430

  25. Shen B, Du L, Sanchez C, Edwards DJ, Chen M, Murrell JM (2001) The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide–polyketide natural product biosynthesis. J Ind Microbiol Biotechnol 27:378–385

  26. Staunton J, Wilkinson B (2001) Combinatorial biosynthesis of polyketides and nonribosomal peptides. Curr Opin Chem Biol 5:159–164

  27. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

  28. Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190

Download references


We are grateful to Dr. Tetsuo Suemoto, Ms. Natsumi Kuwahara, and Ms. Rieko Suzuki for their technical assistance. This work was supported by the grant from the New Energy and Industrial Technology Development Organization (NEDO) of Japan.

Author information

Correspondence to Hisayuki Komaki or Kazuo Shin-ya.

Additional information

H. Komaki and M. Izumikawa contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Komaki, H., Izumikawa, M., Ueda, J. et al. Discovery of a pimaricin analog JBIR-13, from Streptomyces bicolor NBRC 12746 as predicted by sequence analysis of type I polyketide synthase gene. Appl Microbiol Biotechnol 83, 127–133 (2009). https://doi.org/10.1007/s00253-008-1849-8

Download citation


  • Type I polyketide synthase
  • Streptomyces bicolor
  • Polyene macrolide
  • JBIR-13
  • Pimaricin