Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Expression of BHRF1 improves survival of murine hybridoma cultures in batch and continuous modes

  • 106 Accesses

  • 7 Citations

Abstract

Cell death by apoptosis limits growth and productivity in most animal cell cultures. It is therefore desirable to define genetic interventions to generate robust cell lines with superior performance in bioreactors, either by increasing specific productivity, life-span of the cultures or both. In this context, forced expression of BHRF1, an Epstein–Barr virus-encoded early protein with structural and functional homology with the anti-apoptotic protein Bcl-2, effectively protected hybridomas in culture and delayed cell death under conditions of glutamine starvation. In the present study, we explored the potential application of BHRF1 expression in hybridomas for long-term apoptosis protection under different biotechnological process designs (batch and continuous) and compared it to strategies based on Bcl-2 overexpression. Our results confirmed that long-term maintenance of the anti-apoptotic effect of BHRF1 can be obtained using bicistronic configurations conferring enhanced protection compared to Bcl-2, even in the absence of selective pressure. Such protective effect of BHRF1 is demonstrated both in batch and continuous culture. Moreover, a further analysis at high cell densities in semi-continuous perfusion cultures indicated that the mechanism of action of BHRF1 involves cell cycle arrest in G0–G1 state and this is translated in lower numbers of dead cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albrecht JC, Nicholas J, Biller D, Cameron KR, Biesinger B, Newman C, Wittmann S, Craxton MA, Coleman H, Fleckenstein B, Honess RW (1992) Primary structure of the herpesvirus saimiri genome. J Virol 66:5047–5058

  2. al-Rubeai M, Singh RP (1998) Apoptosis in cell culture. Curr Opin Biotechnol 9:152–156

  3. Altamirano C, Cairo JJ, Godia F (2001) Decoupling cell growth and product formation in Chinese hamster ovary cells through metabolic control. Biotechnol Bioeng 76:351–360

  4. Antonsson B (2004) Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Mol Cell Biochem 256–257:141–155

  5. Arden N, Betenbaugh MJ (2004) Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol 22:174–180

  6. Arvanitakis L, Yaseen N, Sharma S (1995) Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155:1047–1056

  7. Basanez G, Zhang J, Chau BN, Maksaev GI, Frolov VA, Brandt TA, Burch J, Hardwick JM, Zimmerberg J (2001) Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J Biol Chem 276:31083–31091

  8. Barnes LM, Bentley CM, Dickson AJ (2003) Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 81:631–639

  9. Bellows DS, Chau BN, Lee P, Lazebnik Y, Burns WH, Hardwick JM (2000) Antiapoptotic herpesvirus Bcl-2 homologs escape caspase-mediated conversion to proapoptotic proteins. J Virol 74:5024–5031

  10. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

  11. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968

  12. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci U S A 95:554–559

  13. Dickson AJ (1998) Apoptosis regulation and its applications to biotechnology. Trends Biotechnol 16:339–342

  14. Dong H, Tang YJ, Ohashi R, Hamel JF (2005) A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol Prog 21:140–147

  15. Figueroa B Jr, Chen S, Oyler GA, Hardwick JM, Betenbaugh MJ (2004) Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnol Bioeng 85:589–600

  16. Figueroa B Jr, Ailor E, Osborne D, Hardwick JM, Reff M, Betenbaugh MJ (2007) Enhanced cell culture performance using inducible anti-apoptotic genes E1B-19K and Aven in the production of a monoclonal antibody with Chinese hamster ovary cells. Biotechnol Bioeng 97:877–892

  17. Foghsgaard L, Jaattela M (1997) The ability of BHRF1 to inhibit apoptosis is dependent on stimulus and cell type. J Virol 71:7509–7517

  18. Gangappa S, van Dyk LF, Jewett TJ, Speck SH, Virgin HW (2002) Identification of the in vivo role of a viral bcl-2. J Exp Med 195:931–940

  19. Henderson S, Huen D, Rowe M, Dawson C, Johnson G, Rickinson A (1993) Epstein–Barr virus-coded BHRF1 protein, a viral homologue of Bcl-2, protects human B cells from programmed cell death. Proc Natl Acad Sci U S A 90:8479–8483

  20. Huang Q, Petros AM, Virgin HW, Fesik SW, Olejniczak ET (2003) Solution structure of the BHRF1 protein from Epstein–Barr virus, a homolog of human Bcl-2. J Mol Biol 332:1123–1130

  21. Izumi M, Gilbert DM (1999) Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 76:280–289

  22. Jaattela M (1999) Escaping cell death: survival proteins in cancer. Exp Cell Res 248:30–43

  23. Jonas EA, Hickman JA, Chachar M, Polster BM, Brandt TA, Fannjiang Y, Ivanovska I, Basanez G, Kinnally KW, Zimmerberg J, Hardwick JM, Kaczmarek LK (2004) Proapoptotic N-truncated BCL-xL protein activates endogenous mitochondrial channels in living synaptic terminals. Proc Natl Acad Sci U S A 101:13590–13595

  24. Jung JU, Stager M, Desrosiers RC (1994) Virus-encoded cyclin. Mol Cell Biol 14:7235–7244

  25. Kawanishi M (1997) Epstein–Barr virus BHRF1 protein protects intestine 407 epithelial cells from apoptosis induced by tumor necrosis factor alpha and anti-Fas antibody. J Virol 71:3319–3322

  26. Kawanishi M, Tada-Oikawa S, Kawanishi S (2002) Epstein–Barr virus BHRF1 functions downstream of Bid cleavage and upstream of mitochondrial dysfunction to inhibit TRAIL-induced apoptosis in BJAB cells. Biochem Biophys Res Commun 297:682–687

  27. Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazebnik YA, Hardwick JM (1999) Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155–21161

  28. Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107:1–17

  29. Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

  30. Lee JH, Welsh MJ (1999) Enhancement of calcium phosphate-mediated transfection by inclusion of adenovirus in coprecipitates. Gene Ther 6:676–682

  31. Li LY, Liu MY, Shih HM, Tsai CH, Chen JY (2006) Human cellular protein VRK2 interacts specifically with Epstein–Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol 87:2869–2878

  32. Li LY, Shih HM, Liu MY, Chen JY (2001) The cellular protein PRA1 modulates the anti-apoptotic activity of Epstein–Barr virus BHRF1, a homologue of Bcl-2, through direct interaction. J Biol Chem 276:27354–27362

  33. Liston P, Fong WG, Korneluk RG (2003) The inhibitors of apoptosis: there is more to life than Bcl2. Oncogene 22:8568–8580

  34. McCarthy NJ, Hazlewood SA, Huen DS, Rickinson AB, Williams GT (1996) The Epstein–Barr virus gene BHRF1, a homologue of the cellular oncogene Bcl-2, inhibits apoptosis induced by gamma radiation and chemotherapeutic drugs. Adv Exp Med Biol 406:83–97

  35. Mohan SB, Lyddiatt A (1991) Passive release of monoclonal antibodies from hybridoma cells. Cytotechnology 5:201–209

  36. Nicholas J, Cameron KR, Honess RW (1992) Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins. Nature 355:362–365

  37. Qu Z, Thottassery JV, Van Ginkel S, Manuvakhova M, Westbrook L, Roland-Lazenby C, Hays S, Kern FG (2004) Homogeneity and long-term stability of tetracycline-regulated gene expression with low basal activity by using the rtTA2S-M2 transactivator and insulator-flanked reporter vectors. Gene 327:61–73

  38. Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 93:14862–14867

  39. Salvesen GS, Duckett CS (2002) IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3:401–410

  40. Sauerwald TM, Oyler GA, Betenbaugh MJ (2003) Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng 81:329–340

  41. Sauerwald TM, Figueroa B Jr, Hardwick JM, Oyler GA, Betenbaugh MJ (2006) Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng 94:362–372

  42. Seow TK, Korke R, Liang RC, Ong SE, Ou K, Wong K, Hu WS, Chung MC (2001) Proteomic investigation of metabolic shift in mammalian cell culture. Biotechnol Prog 17:1137–1144

  43. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 6:1067–1074

  44. Spierings D, McStay G, Saleh M, Bender C, Chipuk J, Maurer U, Green DR (2005) Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science 310:66–67

  45. Stennicke HR, Ryan CA, Salvesen GS (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem Sci 27:94–101

  46. Tarodi B, Subramanian T, Chinnadurai G (1994) Epstein–Barr virus BHRF1 protein protects against cell death induced by DNA-damaging agents and heterologous viral infection. Virology 201:404–407

  47. Tinto A, Gabernet C, Vives J, Prats E, Cairo JJ, Cornudella L, Godia F (2002) The protection of hybridoma cells from apoptosis by caspase inhibition allows culture recovery when exposed to non-inducing conditions. J Biotechnol 95:205–214

  48. van Dyk LF, Virgin HW, Speck SH (2000) The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461

  49. Vives J, Juanola S, Cairo JJ, Godia F (2003a) Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry. Metab Eng 5:124–132

  50. Vives J, Juanola S, Cairo JJ, Prats E, Cornudella L, Godia F (2003b) Protective effect of viral homologues of bcl-2 on hybridoma cells under apoptosis-inducing conditions. Biotechnol Prog 19:84–89

  51. Wong DC, Wong KT, Lee YY, Morin PN, Heng CK, Yap MG (2006) Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnol Bioeng 94:373–382

Download references

Acknowledgements

We thank Dr. H. Thomson for critical review of the manuscript. The present work has been developed in the framework of the “Centre de Referència en Biotecnologia” (Generalitat de Catalunya). SJ, JV, FG and JC were supported by “Plan Nacional de Biotecnología” (MEC, BIO2001-2000) and EP by “Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica” (MEC, BMC2003-02711).

Author information

Correspondence to Francesc Gòdia.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Juanola, S., Vives, J., Milián, E. et al. Expression of BHRF1 improves survival of murine hybridoma cultures in batch and continuous modes. Appl Microbiol Biotechnol 83, 43–57 (2009). https://doi.org/10.1007/s00253-008-1820-8

Download citation

Keywords

  • BHRF1
  • Hybridoma cells
  • Apoptosis protection