Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum

Abstract

In this study, secreted Corynebacterium glutamicum proteins were investigated by two-dimensional gel electrophoresis. Around 100 spots observed in the pH range 4.5–5.5 had molecular masses that varied from 10 to 50 kDa. Upon N-terminal amino acid sequence analysis by Edman degradation, two of them were hits to two hypothetical proteins encoded by cgR_1176 and cgR_2070 on C. glutamicum R genome, respectively. Active-form α-amylase derived from Geobacillus stearothermophilus was successfully secreted by using the predicted cgR_1176 and cgR_2070 signal sequences, indicating that these hypothetical proteins were secreted proteins. Analysis using a disruption mutant of the twin-arginine translocation (Tat) export pathway machinery of C. glutamicum suggested that one is Tat pathway dependent secretion while the other is independent of the pathway. Our results demonstrate that C. glutamicum can secrete exoproteins by using its own signal sequences, indicating its potential as a host for protein productions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Billman-Jacobe H, Wang L, Kortt A, Stewart D, Radford A (1995) Expression and secretion of heterologous proteases by Corynebacterium glutamicum. Appl Environ Microbiol 61:1610–1613

  2. Brand S, Niehaus K, Puhler A, Kalinowski J (2003) Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol 180:33–44

  3. Brockmeier U, Caspers M, Freud RL, Jockwer A, Noll T, Eggert T (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. J Mol Biol 362:393–402

  4. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2004) High level expression of Streptomyces mobaraensis transglutaminase in Corynebacterium glutamicum using a chimeric pro-region from Streptomyces cinnamoneus transglutaminase. J Biotechnol 110:219–226

  5. Date M, Itaya H, Matsui H, Kikuchi Y (2006) Secretion of human epidermal growth factor by Corynebacterium glutamicum. Lett Appl Microbiol 42:66–70

  6. de Boer HA, Cornstock LJ, Vasser M (1983) The tac promoter: a functional hybrid derived from the top and lac promoters. Proc Natl Acad Sci 80:21–25

  7. Diaz M, Adham SA, Ramon D, Gil JA, Santamaria RI (2004) Streptomyces lividans and Brevibacterium lactofermentum as heterologous hosts for the production of X22 xylanase from Aspergillus nidulans. Appl Microbiol Biotechnol 65:401–406

  8. Eikmanns BJ, Kleinertz E, Liebl W, Sahm H (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene 102:93–98

  9. Feilmeier BJ, Iseminger G, Schroeder D, Webber H, Phillips GJ (2000) Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J Bacteriol 182:4068–4076

  10. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

  11. Hansmeier N, Bartels FW, Ros R, Anselmetti D, Tauch A, Puhler A, Kalinowski J (2004) Classification of hyper-variable Corynebacterium glutamicum surface-layer proteins by sequence analyses and atomic force microscopy. J Biotechnol 112:177–193

  12. Hansmeier N, Chao TC, Puhler A, Tauch A, Kalinowski J (2006) The cytosolic, cell surface and extracellular proteomes of the biotechnologically important soil bacterium Corynebacterium efficiens YS-314 in comparison to those of Corynebacterium glutamicum ATCC 13032. Proteomics 6:233–250

  13. Hartmann M, Barsch A, Niehaus K, Puhler A, Tauch A, Kalinowski J (2004) The glycosylated cell surface protein Rpf2, containing a resuscitation-promoting factor motif, is involved in intercellular communication of Corynebacterium glutamicum. Arch Microbiol 182:299–312

  14. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

  15. Hermann T, Pfefferle W, Baumann C, Busker E, Schaffer S, Bott M, Sahm H, Dusch N, Kalinowski J, Puhler A, Bendt AK, Kramer R, Burkovski A (2001) Proteome analysis of Corynebacterium glutamicum. Electrophoresis 22:1712–1723

  16. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

  17. Joliff G, Mathieu L, Hahn V, Bayan N, Duchiron F, Renaud M, Schechter E, Leblon G (1992) Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: the deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex. Mol Microbiol 6:2349–2362

  18. Kacem R, De Sousa-D'Auria C, Tropis M, Chami M, Gounon P, Leblon G, Houssin C, Daffe M (2004) Importance of mycoloyltransferases on the physiology of Corynebacterium glutamicum. Microbiology 150:73–84

  19. Kikuchi Y, Date M, Itaya H, Matsui K, Wu LF (2006) Functional analysis of the twin-arginine translocation pathway in Corynebacterium glutamicum ATCC 13869. Appl Environ Microbiol 72:7183–7192

  20. Kikuchi Y, Itaya H, Date M, Matsui K, Wu LF (2008) Production of Chryseobacterium proteolyticum protein-glutaminase using the twin-arginine translocation pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 78:67–74

  21. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Cummings, London, pp 115–146

  22. Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

  23. Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA (2007) Identification of subtilisin, Epr and Vpr as enzymes that produce CSF, an extracellular signaling peptide of Bacillus subtilis. Mol Microbiol 65:1321–1333

  24. Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60:373–395

  25. Liebl W, Sinskey AJ, Schleifer KH (1992) Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum. J Bacteriol 174:1854–1861

  26. Malumbres M, Mateos LM, Martin JF (1995) Microorganisms for amino acid production: Escherichia coli and corynebacteria. In: Hui YH, Kachatourians GG (eds) Food biotechnology microorganisms 2. VCH, New York, pp 423–469

  27. Meissner D, Vollstedt A, van Dijl JM, Freudl R (2007) Comparative analysis of twin-arginine (Tat)-dependent protein secretion of a heterologous model protein (GFP) in three different Gram-positive bacteria. Appl Microbiol Biotechnol 76:633–642

  28. Morinaga Y, Tsuchida M, Miwa K, Sano K (1987) Expression of E. coli promoters in Brevibacterium lactofermentum using the shuttle vector pEB003. J Biotechnol 5:305–312

  29. Muller M, Klosgen RB (2005) The Tat pathway in bacteria and chloroplasts. Mol Membr Biol 22:113–121

  30. Paradis FW, Warren RA, Kilburn DG, Miller Jr RC (1987) The expression of Cellulomonas fimi cellulase genes in Brevibacterium lactofermentum. Gene 61:199–206

  31. Patek M, Eikmanns BJ, Patek J, Sahm H (1996) Promoters of Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

  32. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

  33. Peyret JL, Bayan N, Joliff G, Gulik-Krzywicki T, Mathieu L, Schechter E, Leblon G (1993) Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum. Mol Microbiol 9:97–109

  34. Puech V, Bayan N, Salim K, Leblon G, Daffe M (2000) Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol 35:1026–1041

  35. Puech V, Chami M, Lemassu A, Laneelle MA, Schiffler B, Gounon P, Bayan N, Benz R, Daffe M (2001) Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382

  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. New York Cold Spring Harbor Laboratory Press, New York

  37. Schaffer S, Weil B, Nguyen VD, Dongmann G, Gunther K, Nickolaus M, Hermann T, Bott M (2001) A high-resolution reference map for cytoplasmic and membrane-associated proteins of Corynebacterium glutamicum. Electrophoresis 22:4404–4422

  38. Scheuring S, Stahlberg H, Chami M, Houssin C, Rigaud JL, Engel A (2002) Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope. Mol Microbiol 44:675–684

  39. Simonen M, Palva I (1993) Protein secretion in Bacillus species. Microbiol Rev 57:109–137

  40. Smith MD, Flickinger JL, Lineberger DW, Schmidt B (1986) Protoplast transformation in coryneform bacteria and introduction of an alpha-amylase gene from Bacillus amyloliquefaciens into Brevibacterium lactofermentum. Appl Environ Microbiol 51:634–639

  41. Soual-Hoebeke E, de Sousa-D'Auria C, Chami M, Baucher MF, Guyonvarch A, Bayan N, Salim K, Leblon G (1999) S-layer protein production by Corynebacterium strains is dependent on the carbon source. Microbiology 145:3399–3408

  42. Suzuki N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2005) New multiple-deletion method for the Corynebacterium glutamicum genome, using a mutant lox sequence. Appl Environ Microbiol 71:8472–8480

  43. Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

  44. Thomas JD, Daniel RA, Errington J, Robinson C (2001) Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39:47–53

  45. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

  46. Tsuchiya M, Morinaga Y (1988) Genetic control systems of Escherichia coli can confer inducible expression of cloned genes in coryneform bacteria. Bio/Technology 6:428–430

  47. van Wely KH, Swaving J, Freudl R, Driessen AJ (2001) Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol Rev 25:437–454

  48. Vertès AA, Hatakeyama M, Inui M, Kobayashi Y, Kurusu Y, Yukawa H (1993) Replacement recombination in coryneform bacteria: high efficiency integration requirement for non-methylated plasmid DNA. Biosci Biotechnol Biochem 57:2036–2038

  49. Vertès AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71:7633–7642

  50. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

Download references

Acknowledgments

We wish to thank Dr. C. Omumasaba (internal) for critical reading of the manuscript and helpful comments. This study was funded by New Energy and Industrial Technology Development Organization (NEDO).

Author information

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suzuki, N., Watanabe, K., Okibe, N. et al. Identification of new secreted proteins and secretion of heterologous amylase by C. glutamicum . Appl Microbiol Biotechnol 82, 491–500 (2009). https://doi.org/10.1007/s00253-008-1786-6

Download citation

Keywords

  • Secretion
  • C. glutamicum
  • Signal sequence
  • Sec
  • Tat