Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods

Abstract

Branched aldehydes, such as 2-methyl propanal and 2- and 3-methyl butanal, are important flavour compounds in many food products, both fermented and non-fermented (heat-treated) products. The production and degradation of these aldehydes from amino acids is described and reviewed extensively in literature. This paper reviews aspects influencing the formation of these aldehydes at the level of metabolic conversions, microbial and food composition. Special emphasis was on 3-methyl butanal and its presence in various food products. Knowledge gained about the generation pathways of these flavour compounds is essential for being able to control the formation of desired levels of these aldehydes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Amarita F, De La Plaza M et al (2006) Cooperation between wild lactococcal strains for cheese aroma formation. Food Chem 94(2):240–246

  2. Andres AI, Cava R et al (2002) Monitoring volatile compounds during dry-cured ham ripening by solid-phase microextraction coupled to a new direct-extraction device. J Chromatogr A 963(1–2):83–88

  3. Andres AI, Ventanas S et al (2005) Physicochemical changes throughout the ripening of dry cured hams with different salt content and processing conditions. Eur Food Res Technol 221(1–2):30–35

  4. Ansorena D, Astiasaran I et al (2000) Influence of the simultaneous addition of the protease flavourzyme and the lipase Novozym 677BG on dry fermented sausage compounds extracted by SDE and analyzed by GC-MS. J Agric Food Chem 48(6):2395–2400

  5. Arnau J, Jørgensen F et al (1998) Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J Bacteriol 180(12):3049–3055

  6. Ayad EHE, Verheul A et al (1999) Flavour forming abilities and amino acid requirements of Lactococcus lactis strains isolated from artisanal and non-dairy origin. Int Dairy J 9(10):725–735

  7. Ayad EHE, Verheul A et al (2000) Application of wild starter cultures for flavour development in pilot plant cheese making. Int Dairy J 10(3):169–179

  8. Ayad EHE, Verheul A et al (2001) Enhanced flavour formation by combination of selected lactococci from industrial and artisanal origin with focus on completion of a metabolic pathway. J Appl Microbiol 90(1):59–67

  9. Ayad EHE, Verheul A et al (2003) Starter culture development for improving the flavour of Proosdij-type cheese. Int Dairy J 13(2–3):159–168

  10. Azarnia S, Robert N et al (2006) Biotechnological methods to accelerate cheddar cheese ripening. Crit Rev Biotechnol 26(3):121–143

  11. Baltes W (1982) Chemical changes in food by the Maillard reaction. Food Chem 9(1–2):59–73

  12. Banks JM, Yvon M et al (2001) Enhancement of amino acid catabolism in cheddar cheese using alpha-ketoglutarate: amino acid degradation in relation to volatile compounds and aroma character. Int Dairy J 11(4–7):235–243

  13. Beck HC, Hansen AM et al (2002) Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus. Enzyme Microbial Technol 31(1–2):94–101

  14. Beck HC, Hansen AM et al (2004) Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus. J Appl Microbiol 96(5):1185–1193

  15. Berthold CL, Gocke D et al (2007) Structure of the branched-chain keto acid decarboxylase (KdcA) from Lactococcus lactis provides insights into the structural basis for the chemoselective and enantioselective carboligation reaction. Acta Crystallogr D Biol Crystallogr 63(12):1217–1224

  16. Bockelmann W, Golecki S et al (2006) Cheese ripening with Lactococcus lactis starters containing additional peptidase genes from Lactobacillus delbrueckii subsp. lactis. Kiel Milchwirtsch Forschungsber 58(2):93–107

  17. Bourdat-Deschamps M, Le Bars D et al (2004) Autolysis of Lactococcus lactis AM2 stimulates the formation of certain aroma compounds from amino acids in a cheese model. Int Dairy J 14(9):791–800

  18. Bradshaw CW, Hummel W et al (1992) Lactobacillus kefir alcohol dehydrogenase: a useful catalyst for synthesis. J Org Chem 57(5):1532–1536

  19. Broadbent JR, Gummalla S et al (2004) Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in cheddar cheese. Appl Environ Microbiol 70(8):4814–4820

  20. Buttery RG, Orts WJ et al (1999) Volatile flavor components of rice cakes. J Agric Food Chem 47(10):4353–4356

  21. Campo E, Cacho J et al (2008) The chemical characterization of the aroma of dessert and sparkling white wines (Pedro Ximenez, Fino, Sauternes, and Cava) by gas chromatography-olfactometry and chemical quantitative analysis. J Agric Food Chem 56(7):2477–2484

  22. Casaburi A, Di Monaco R et al (2008) Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiol 25(2):335–347

  23. Chambellon E, Yvon M (2003) CodY-regulated aminotransferases AraT and BcaT play a major role in the growth of Lactococcus lactis in milk by regulating the intracellular pool of amino acids. Appl Environ Microbiol 69(6):3061–3068

  24. Chen ECH (1977) Keto acid decarboxylase and alcohol dehydrogenase activities of yeast in relation to the formation of fusel alcohols. Can Inst Food Sci Techn 10(1):27–30

  25. Christensen JE, Dudley EG et al (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76(1–4):217–246

  26. Corsetti A, Settanni L (2007) Lactobacilli in sourdough fermentation. Food Res Int 40(5):539–558

  27. Corsetti A, Settanni L et al (2007) Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiol 24(6):592–600

  28. Counet C, Callemien D et al (2002) Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching. J Agric Food Chem 50(8):2385–2391

  29. Courtin P, Nardi M et al (2002) Accelerating cheese proteolysis by enriching Lactococcus lactis proteolytic system with lactobacilli peptidases. Int Dairy J 12(5):447–454

  30. Cramer A-CJ, Mattinson DS et al (2005) Analysis of volatile compounds from various types of barley cultivars. J Agric Food Chem 53(19):7526–7531

  31. Cullere L, Cacho J et al (2007) An assessment of the role played by some oxidation-related aldehydes in wine aroma. J Agric Food Chem 55(3):876–881

  32. Czerny M, Grosch W (2000) Potent odorants of raw Arabica coffee. Their changes during roasting. J Agric Food Chem 48(3):868–872

  33. Czerny M, Schieberle P (2002) Important aroma compounds in freshly ground wholemeal and white wheat flour - Identification and quantitative changes during sourdough fermentation. J Agric Food Chem 50(23):6835–6840

  34. De La Plaza M, De Palencia PF et al (2004) Biochemical and molecular characterization of a-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 238(2):367–374

  35. De Palencia PF, De La Plaza M et al (2004) Enhancement of 2-methylbutanal formation in cheese by using a fluorescently tagged Lacticin 3147 producing Lactococcus lactis strain. Int J Food Microbiol 93(3):335–347

  36. De Vos Petersen C, Beck HC et al (2004) On-line monitoring of important organoleptic methyl-branched aldehydes during batch fermentation of starter culture Staphylococcus xylosus reveal new insight into their production in a model fermentation. Biotechnol Bioeng 85(3):298–305

  37. Derrick S, Large PJ (1993) Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. J Gen Microbiol 139(11):2783–2792

  38. Di Cagno R, De Angelis M et al (2007) Genotypic and phenotypic diversity of Lactobacillus rossiae strains isolated from sourdough. J Appl Microbiol 103(4):821–835

  39. Dickinson JR (2000a) Branched-chain keto acid dehydrogenase of yeast. Methods Enzymol 324:389–398

  40. Dickinson JR (2000b) Pathways of leucine and valine catabolism in yeast. Methods Enzymol 324:80–94

  41. Dickinson JR, Norte V (1993) A study of branched-chain amino acid aminotransferase and isolation of mutations affecting the catabolism of branched-chain amino acids in Saccharomyces cerevisiae. FEBS Lett 326(1–3):29–32

  42. Didion T, Grauslund M et al (1996) Amino acids induce expression of BAP2, a branched-chain amino acid permease gene in Saccharomyces cerevisiae. J Bacteriol 178(7):2025–2029

  43. Dura MA, Flores M et al (2004) Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Sci 68(2):319–328

  44. Eden A, Van Nedervelde L et al (2001) Involvement of branched-chain amino acid aminotransferases in the production of fusel alcohols during fermentation in yeast. Appl Microbiol Biotechnol 55(3):296–300

  45. Ehrlich F (1907) Über die Bedingungen der Fuselölbindungen und über ihnen Zusammenhang mit dem Eiweissaufbau der Hefe. Ber Dtsch Chem Ges 40:1027–1047

  46. Engels WJM, Alting AC et al (2000) Partial purification and characterization of two aminotransferases from Lactococcus lactis subsp. cremoris B78 involved in the catabolism of methionine and branched-chain amino acids. Int Dairy J 10(7):443–452

  47. Exterkate FA, Alting AC (1995) The role of starter peptidases in the initial proteolytic events leading to amino acids in Gouda cheese. Int Dairy J 5(1):15–28

  48. Fernandez M, Zuniga M (2006) Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32(3):155–183

  49. Fernandez M, Ordoez JA et al (2001) Accelerated ripening of dry fermented sausages. Trends Food Sci Technol 11(6):201–209

  50. Fernandez De Palencia P, De La Plaza M et al (2006) Diversity of amino acid converting enzymes in wild lactic acid bacteria. Enzyme Microbial Technol 38(1–2):88–93

  51. Fickert B, Schieberle P (1998) Identification of the key odorants in barley malt (caramalt) using GC/MS techniques and odour dilution analyses. Die Nahrung 42(6):371–375

  52. Fox PF, McSweeney PL (1996) Proteolysis in cheese during ripening. Food Rev Int 12(4):457–509

  53. Frauendorfer F, Schieberle P (2006) Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J Agric Food Chem 54(15):5521–5529

  54. Gänzle MG, Vermeulen N et al (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24(2):128–138

  55. Gao S, Steele JL (1998) Purificartion and characterization of oligomeric species of an aromatic amino acid aminotransferase from Lactococcus lactis subsp lactis S3. J Food Biochem 22:197–211

  56. Gatti M, Fornasari ME et al (2004) Peptidase activity in various species of dairy thermophilic lactobacilli. J Appl Microbiol 96(2):223–229

  57. Gocke D, Nguyen CL et al (2007) Branched-chain keto acid decarboxylase from Lactococcus lactis (KdcA), a valuable thiamine diphosphate-dependent enzyme for asymmetric C–C bond formation. Adv Synth Catal 349(8–9):1425–1435

  58. Godon J-J, Chopin M-C et al (1992) Branched-chain amino acid biosynthesis genes in Lactococcus lactis subsp. lactis. J Bacteriol 174(20):6580–6589

  59. Godon J-J, Delorme C et al (1993) Gene inactivation in Lactococcus lactis: Branched-chain amino acid biosynthesis. J Bacteriol 175(14):4383–4390

  60. Guedon E, Serror P et al (2001) Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis. Mol Microbiol 40(5):1227–1239

  61. Hansen A, Schieberle P (2005) Generation of aroma compounds during sourdough fermentation: applied and fundamental aspects. Trends Food Sci Technol 16(1–3):85–94

  62. Hansen BV, Houlberg U et al (2001) Transamination of branched-chain amino acids by a cheese related Lactobacillus paracasei strain. Int Dairy J 11(4–7):225–233

  63. Hatanaka A, Kajiwara T et al (1974) Purification and properties of alcohol dehydrogenase from Leuconostoc mesenteroides. Agric Biol Chem 38(10):1819–1833

  64. Hazelwood LA, Tai SL et al (2006) A new physiological role for Pdr12p in Saccharomyces cerevisiae: Export of aromatic and branched-chain organic acids produced in amino acid catabolism. FEMS Yeast Res 6(6):937–945

  65. Helinck S, Le Bars D et al (2004) Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl Environ Microbiol 70(7):3855–3861

  66. Herranz B, Fernandez M et al (2004) Use of Lactococcus lactis subsp. cremoris NCDO 763 and a-ketoglutarate to improve the sensory quality of dry fermented sausages. Meat Sci 66(1):151–163

  67. Herranz B, De La Hoz L et al (2005) Improvement of the sensory properties of dry-fermented sausages by the addition of free amino acids. Food Chem 91(4):673–682

  68. Hester KL, Luo J et al (2000) Purification of Pseudomonas putida branched-chain keto acid dehydrogenase E1 component. Methods Enzymol 324:129–138

  69. Hofmann T, Muench P et al (2000) Quantitative model studies on the formation of aroma-active aldehydes and acids by strecker-type reactions. J Agric Food Chem 48(2):434–440

  70. Hummel W, Kula M-R (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184(1):1–13

  71. Ingham CJ, Sprenkels A et al (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci U S A 104(46):18217–18222

  72. Kattenberg H, Kemming A (1993) The flavor of cocoa in relation to the origin and processing of the cocoa beans. In: Charalambous G (ed) Food flavours, ingredients and composition. Elsevier Science, Amsterdam, The Netherlands, pp 1–22

  73. Keeney M, Day EA (1957) Probable role of the strecker degradation of amino acids in development of cheese flavor. J Dairy Sci 40(7):874–876

  74. Kieronczyk A, Skeie S et al (2003) Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl Environ Microbiol 69(2):734–739

  75. Kieronczyk A, Skeie S et al (2004) The nature of aroma compounds produced in a cheese model by glutamate dehydrogenase positive Lactobacillus INF15D depends on its relative aminotransferase activities towards the different amino acids. Int Dairy J 14(3):227–235

  76. Kieronczyk A, Cachon R et al (2006) Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis. J Appl Microbiol 101(5):1114–1122

  77. Kirchhoff E, Schieberle P (2002) Quantitation of odor-active compounds in rye flour and rye sourdough using stable isotope dilution assays. J Agric Food Chem 50(19):5378–5385

  78. Kohlhaw GB (2003) Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67(1):1–15

  79. Kumazawa K, Masuda H (2001) Change in the flavor of black tea drink during heat processing. J Agric Food Chem 49(7):3304–3309

  80. Kunji ERS, Mierau I et al (1996) The proteolytic systems of lactic acid bacteria. Ant Leeuwenhoek 70:187–221

  81. Larrouture C, Ardaillon V et al (2000) Ability of meat starter cultures to catabolize leucine and evaluation of the degradation products by using an HPLC method. Food Microbiol 17(5):563–570

  82. Larrouture-Thiveyrat C, Montel M-C (2003) Effects of environmental factors on leucine catabolism by Carnobacterium piscicola. Int J Food Microbiol 81(3):177–184

  83. Larrouture-Thiveyrat C, Pepin M et al (2003) Effect of Carnobacterium piscicola on aroma formation in sausage mince. Meat Sci 63(3):423–426

  84. Lavery P, Brown MJB et al (2001) Simple absorbance-based assays for ultra-high througput screening. J Biomol Scr 6(1):3–9

  85. Ledauphin J, Barillier D et al (2006a) Gas chromatographic quantification of aliphatic aldehydes in freshly distilled Calvados and Cognac using 3-methylbenzothiazolin-2-one hydrazone as derivative agent. J Chrom A 1115(1–2):225–232

  86. Ledauphin J, Basset B et al (2006b) Identification of trace volatile compounds in freshly distilled Calvados and Cognac: carbonyl and sulphur compounds. J Food Compos Anal 19(1):28–40

  87. Lepeuple A-S, Vassal L et al (1998) Involvement of a prophage in the lysis of Lactococcus lactis subsp. cremoris AM2 during cheese ripening. Int Dairy J 8(7):667–674

  88. Liu M, Siezen R (2006) Comparative genomics of flavour-forming pathways in lactic acid bacteria. Aust J Dairy Technol 61(2):61–68

  89. Liu M, Nauta A et al (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74(15):4590–4600

  90. Lucke FK (1998) Fermented sausages. In: Wood BJB (ed) Microbiology of fermented foods, 2nd edn. Blackie Academic and Professional, London

  91. Marco A, Navarro JL et al (2007) Quantitation of selected odor-active constituents in dry fermented sausages prepared with different curing salts. J Agric Food Chem 55(8):3058–3065

  92. Martinez-Cuesta MC, Requena T et al (2006a) Permeabilization and lysis induced by bacteriocins and its effect on aldehyde formation by Lactococcus lactis. Biotechnol Lett 28(19):1573–1580

  93. Martinez-Cuesta MC, Requena T et al (2006b) Cell membrane damage induced by lacticin 3147 enhances aldehyde formation in Lactococcus lactis IFPL730. Int J Food Microbiol 109(3):198–204

  94. Martins SIFS, Van Boekel MAJS (2005) Kinetics of the glucose/glycine Maillard reaction pathways: influences of pH and reactant initial concentrations. Food Chem 92(3):437–448

  95. Martins SIFS, Marcelis ATM et al (2003) Kinetic modelling of Amadori N-(1-deoxy-D-fructos-1-yl)-glycine degradation pathways. Part I—Reaction mechanism. Carbohydr Res 338(16):1651–1663

  96. Masson F, Hinrichsen L et al (1999) Factors influencing luecine catabolism by a strain of Staphylococcus carnosus. Int J Food Microbiol 49:173–178

  97. Meijer W, van de Bunt B et al (1998) Lysis of Lactococcus lactis subsp. lactis SK110 and its nisin-immune transconjugant in relation to flavor development in cheese. Appl Environ Microbiol 64(5):1950–1953

  98. Møller JKS, Hinrichsen LL et al (1998) Formation of amino acid (L-leucine, L-phenylalanine) derived volatile flavour compounds by Moraxella phenylpyruvica and Staphylococcus xylosus in cured meat model systems. Int J Food Microbiol 42(1–2):101–117

  99. Montel M-C, Reitz J et al (1996) Biochemical activities of Micrococcaceae and their effects on the aromatic profiles and odours of a dry sausage model. Food Microbiol 13(6):489–499

  100. Namba Y, Yoshizawa K et al (1969) Coenzyme A- and nicotinamide adenine dinucleotide-sdependent branched chain a-keto acid dehydrogenase. J Biol Chem 244(16):4437–4447

  101. Nielsen DS, Teniola OD et al (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114(2):168–186

  102. Nunomura N, Sasaki M (1992) Japanese soy sauce flavor with emphasis on off-flavors. Dev Food Sci 28:287–312

  103. Oberparleiter S, Ziegleder G (1997) Amadori-compounds as cocoa aroma precursors [Amadori-Verbindungen als Aromavorstufen in Kakao]. Nahrung 41(3):142–145

  104. Ogrydziak DM (1993) Yeast extracellular proteases. Crit Rev Biotechnol 13(1):1–55

  105. Oku H, Kaneda T (1988) Biosynthesis of branched-chain fatty acids in Bacillus subtilis. A decarboxylase is essential for branched-chain fatty acid synthetase. J Biol Chem 263(34):18386–18396

  106. Olesen PT, Stahnke LH (2004) The influence of environmental parameters on the catabolism of branched-chain amino acids by Staphylococcus xylosus and Staphylococcus carnosus. Food Microbiol 21(1):43–50

  107. Pastink MI, Sieuwerts S et al (2008) Genomics and high-throughput screening approaches for optimal flavour production in dairy fermentation. Int Dairy J 18(8):781–789

  108. Pokorny J, Luan N-T et al (1973) Non-enzymic browning—VII. Reactions of some tocopherol oxidation products with protein. Z Lebensm Unters Forsch 152(2):65–70

  109. Rijnen L, Bonneau S et al (1999a) Genetic characterization of the major lactococcal aromatic aminotransferase and its involvement in conversion of amino acids to aroma compounds. Appl Environ Microbiol 65(11):4873–4880

  110. Rijnen L, Delacroix Buchet A et al (1999b) Inactivation of lactococcal aromatic aminotransferase prevents the formation of floral aroma compounds from aromatic amino acids in semi-hard cheese. Int Dairy J 9(12):877–885

  111. Rijnen L, Courtin P et al (2000) Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds. Appl Environ Microbiol 66(4):1354–1359

  112. Rizzi GP (1998) The Strecker degradation and its contribution to food flavour. In: Teranishi R, Wick EL, Hornstein I (eds) Flavor chemistry: 30 years of progress. Kluwer, Dortrecht, pp 335–345

  113. Ruiz JA, Quilez J et al (2003) Solid-phase microextraction method for headspace analysis of volatile compounds in bread crumb. Cereal Chem 80(3):255–259

  114. Savijoki K, Ingmer H et al (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71(4):394–406

  115. Schieberle P (1996) Odour-active compounds in moderately roasted sesame. Food Chem 55(2):145–152

  116. Schlegel HG (1997) Lactic acid fermentation and lactobacteriaceae. In: Kogut M (ed) General microbiology. Cambridge University Press, Cambridge, pp 300–308

  117. Schneider-Bernlohr H, Fiedler H et al (1981) Alcohol dehydrogenase from Leuconostoc mesenteroides: molecular properties in comparison with the yeast and horse liver enzyme. Int J Biochem 13(12):1215–1224

  118. Schonberg A, Moubacher R (1952) The Strecker degradation of a-amino acids. Chem Rev 50(2):261–277

  119. Schoondermark-Stolk SA, Tabernero M et al (2005) Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. FEMS Yeast Res 5(8):757–766

  120. Sheldon RM, Lindsay RC et al (1971) Chemical nature of malty flavor and aroma produced by Streptococcus lactis var. maltigenes. Appl Microbiol 22(3):263–266

  121. Sieuwerts S, de Bok FAM et al (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74(16):4997–5007

  122. Smit BA (2004) Formation of amino acid derived cheese flavour compounds. PhD Thesis Wageningen University, Wageningen, The Netherlands

  123. Smit BA, Engels WJ et al (2004a) Chemical conversion of alpha-keto acids in relation to flavor formation in fermented foods. J Agric Food Chem 52(5):1263–1268

  124. Smit BA, Engels WJ et al (2004b) Development of a high throughput screening method to test flavour-forming capabilities of anaerobic micro-organisms. J Appl Microbiol 97(2):306–313

  125. Smit BA, Engels WJ et al (2004c) Diversity of L-leucine catabolism in various microorganisms involved in dairy fermentations, and identification of the rate-controlling step in the formation of the potent flavour component 3-methylbutanal. Appl Microbiol Biotechnol 64(3):396–402

  126. Smit BA, van Hylckama Vlieg JE et al (2005a) Identification, cloning, and characterization of a lactococcus lactis branched-chain a-keto acid decarboxylase involved in flavor formation. Appl Environ Microbiol 71(1):303–311

  127. Smit G, Smit BA et al (2005b) Flavour, formation by LAB and biochemical profiling of fermented flavour. FEMS Microbiol Rev 29:591

  128. Song H, Cadwallader KR et al (2008) Odour-active compounds of Jinhua ham. Flav and Frag J 23(1):1–6

  129. Stahnke LH (1999a) Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces Part I. Collection and identification. LWT Food Sci Technol 32(6):357–364

  130. Stahnke LH (1999b) Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces Part II. The influence of growth parameters. LWT Food Sci Technol 32(6):365–371

  131. Steinhaus P, Schieberle P (2007) Characterization of the key aroma compounds in soy sauce using approaches of molecular sensory science. J Agric Food Chem 55(15):6262–6269

  132. Strecker A (1862) On a peculiar oxidation by alloxan (in German). Justus Liebigs Ann Chem 123:363

  133. Swiegers JH, Pretorius IS (2005) Yeast modulation of wine flavor. Adv Appl Microbiol 57:131–175

  134. Swiegers JH, Bartowsky EJ et al (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11(2):139–173

  135. Tanous C, Chambellon E et al (2006) Glutamate dehydrogenase activity can be transmitted naturally to Lactococcus lactis strains to stimulate amino acid conversion to aroma compounds. Appl Environ Microbiol 72(2):1402–1409

  136. Temino DM-RD, Hartmeier W et al (2005) Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents. Enzyme Microbial Technol 36(1):3–9

  137. Ter Schure EG, Flikweert MT et al (1998) Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2- oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae. Appl Environ Microbiol 64(4):1303–1307

  138. Tjener K, Stahnke LH et al (2004a) Addition of a-ketoglutarate enhances formation of volatiles by Staphylococcus carnosus during sausage fermentation. Meat Sci 67(4):711–719

  139. Tjener K, Stahnke LH et al (2004b) The pH-unrelated influence of salt, temperature and manganese on aroma formation by Staphylococcus xylosus and Staphylococcus carnosus in a fermented meat model system. Int J Food Microbiol 97(1):31–42

  140. Tucker JS, Morgan ME (1967) Decarboxylation of a-keto acids by Streptococcus lactis var. maltigenes. Appl Environ Microbiol 15(4):694–700

  141. Ur-Rehman S, Fox PF (2002) Effect of added α-ketoglutaric acid, pyruvic acid or pyridoxal phosphate on proteolyis and quality of cheddar cheese. Food Chemi 76(1):21–26

  142. Van De Guchte M, Kodde J et al (1990) Heterologous gene expression in Lactococcus lactis subsp. lactis: synthesis, secretion, and processing of the Baccilius subtilis neutral protease. Appl Environ Microbiol 56(9):2606–2611

  143. Vanderhaegen B, Delvaux F et al (2007) Aging characteristics of different beer types. Food Chem 103(2):404–412

  144. Van Der Meulen R, Scheirlinck I et al (2007) Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Appl Environ Microbiol 73(15):4741–4750

  145. van der Sluis C, Smit BA et al (2000) Regulation of aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii compared to Saccharomyces cerevisiae. Enzyme Microbial Technol 27(1–2):151–156

  146. van der Sluis C, Rahardjo YSP et al (2002) Concomitant extracellular accumulation of alpha-keto acids and higher alcohols by Zygosaccharomyces rouxii. J Biosc Bioeng 93(2):117–124

  147. van Hylckama Vlieg JET, Hugenholtz J (2007) Mining natural diversity of lactic acid bacteria for flavour and health benefits. Int Dairy J 17(11):1290–1297

  148. Vesely P, Lusk L et al (2003) Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J Agric Food Chem 51(24):6941–6944

  149. Vuralhan Z, Luttik MAH et al (2005) Physiological characterization of the ARO10-dependent, broad-substrate- specificity 2-oxo acid decarboxylase activity of Saccharomyces cerevisiae. Appl Environ Microbiol 71(6):3276–3284

  150. Ward DE, Ross RP et al (1999) Catabolism of chranched-chain a-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes and metabolic route. J Bacteriol 181(17):5433–5442

  151. Whetstine MEC, Drake MA et al (2006) Enhanced nutty flavor formation in cheddar cheese made with a malty Lactococcus lactis adjunct culture. J Dairy Sci 89(9):3277–3284

  152. Williams AG, Noble J et al (2004) The effect of a-ketoglutaric acid on amino acid utilization by nonstarter Lactobacillus spp. isolated from Cheddar cheese. Lett Appl Microbiol 38(4):289–295

  153. Wright J, Wulfert F et al (2007) Effect of preparation conditions on release of selected volatiles in tea headspace. J Agric Food Chem 55(4):1445–1453

  154. Yep A, Kenyon GL et al (2006) Determinants of substrate specificity in KdcA, a thiamin diphosphate-dependent decarboxylase. Bioorg Chem 34(6):325–336

  155. Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11(4–7):185–201

  156. Yvon M, Thirouin S et al (1997) An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavour compounds. Appl Environ Microbiol 63(2):414–419

  157. Yvon M, Berthelot S et al (1999) Adding alpha-ketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds. Int Dairy J 8(10–11):889–898

  158. Yvon M, Chambellon E et al (2000) Characterization and role of the branched-chain aminotransferase (BcaT) isolated from Lactococcus lactis subsp cremoris NCDO 763. Appl Environ Microbiol 66(2):571–577

  159. Zehentbauer G (2001) Apparatus for the quantitative analysis of the aroma of french bread and its loss during storage. Adv Exp Med Biol 488:175–185

  160. Zhou Q, Wintersteen CL et al (2002) Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J Agric Food Chem 50(7):2016–2021

  161. Zhu K, Bayles DO et al (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain a-keto acid dehydrogenase. Microbiology 151(2):615–623

  162. Ziegleder G (1991) Composition of flavor extracts of raw and roasted cocoas. Z Lebensm Unters Forsch 192(6):521–525

  163. Zink MW, Sanwal BD (1962) The distribution and substrate specificity of L-leucine dehydrogenase. Arch Biochem Biophys 99:72–77

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Correspondence to Gerrit Smit.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Smit, B.A., Engels, W.J. & Smit, G. Branched chain aldehydes: production and breakdown pathways and relevance for flavour in foods. Appl Microbiol Biotechnol 81, 987–999 (2009). https://doi.org/10.1007/s00253-008-1758-x

Download citation

Keywords

  • Fermentative flavour formation
  • Lactic acid bacteria
  • Amino acid converting enzymes
  • Branched chain aldehydes
  • 3-Methylbutanal