Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance

  • 241 Accesses

  • 23 Citations

Abstract

Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aono R, Negishi T, Nakajima H (1994) Cloning of organic solvent tolerance gene ostA that determines n-hexane tolerance level in Escherichia coli. Appl Environ Microbiol 60:4624–4626

  2. Asako H, Nakajima H, Kobayashi K, Kobayashi M, Aono R (1997) Organic solvent tolerance and antibiotic resistance increased by overexpression of marA in Escherichia coli. Appl Environ Microbiol 63:1428–1433

  3. Bos MP, Tefsen B, Geurtsen J, Tommassen J (2004) Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci U S A 101:9417–9422

  4. Echave P, Esparza-Cerón MA, Cabiscol E, Tamarit J, Ros J, Membrillo-Hernández J, Lin EC (2002) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci U S A 99:4626–4631

  5. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

  6. Gribaldo S, Lumia V, Creti R, de Macario EC, Sanangelantoni A, Cammarano P (1999) Discontinuous occurrence of the hsp70 (dnaK) gene among archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J Bacteriol 181:434–443

  7. Han CJ, Park SH, Kelly RM (1997) Acquired thermotolerance and stressed-phase growth of the extremely thermoacidiphilic archaeon Metallosphaera sedula in continuous culture. Appl Environ Microbiol 63:2391–2396

  8. Hansch C, Fujita T (1964) ρ-σ-π- analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

  9. Hayashi S, Aono R, Hanai T, Mori H, Kobayashi T, Honda H (2003) Analysis of organic solvent tolerance in Escherichia coli using gene expression profiles from DNA microarrays. J Biosci Bioeng 95:379–383

  10. Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM (1994) Mechanisms behind resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415

  11. Ingram LO (1977) Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol 33:1233–1236

  12. Isken S, de Bont JAM (1996) Active efflux of toluene in a solvent-resistant bacterium. J Bacteriol 178:6056–6058

  13. Jakob U, Ester M, Bardwell JC (2000) Redox switch of hsp33 has a novel zinc-binding motif. J Biol Chem 275:38302–38310

  14. Kang H-J, Heo D-J, Choi S-W, Kim K-N, Shim J, Kim C-W, Sung H-C, Yun C-W (2007) Functional characterization of Hsp33 proteins from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochim Biophys Res Commun 358:743–750

  15. Macario AJL, Lange M, Ahring BK, de Macario EC (1999) Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 63:923–967

  16. Miura S, Zou W, Ueda M, Tanaka A (2000) Screening of genes involved in isooctane tolerance in Saccharomyces cerevisiae by using mRNA differential display. Appl Environ Microbiol 66:4883–4889

  17. Nakajima H, Kobayashi K, Kobayashi M, Asako H, Aono R (1995) Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl Environ Microbiol 61:2302–2307

  18. Okochi M, Yoshida T, Maruyama T, Kawarabayasi Y, Kikuchi H, Yohda M (2002) Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun 291:769–774

  19. Okochi M, Nomura T, Zako T, Arakawa T, Iizuka R, Ueda H, Funatsu H, Leroux M, Yohda M (2004) Kinetics and binding sites for interaction of the prefoldin with group II chaperonin: contiguous nonnative substrate and chaperonin binding sites in archaeal prefoldin. J Biol Chem 279:31788–31795

  20. Okochi M, Matsuzaki H, Nomura T, Ishii N, Yohda M (2005) Molecular characterization of the group II chaperonin from the hyperthermophilic archaeum, Pyrococcus horikoshii OT3. Extremophiles 9:127–134

  21. Okochi M, Kurimoto M, Shimizu K, Honda H (2007) Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli. Appl Microbiol Biotechnol 73:1394–1399

  22. Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

  23. Ramos JL, Duque E, Gallegos MT, Godoy P, R-Gonzales MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56:743–768

  24. Rosenberg M, Gutnick D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

  25. Rüdiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

  26. Segura A, Rojas A, Hurtado A, Huertas M-J, Ramos JL (2003) Comparative genemic analysis of solvent extrusion pumps in Pseudomonas strains exhibiting different degrees of solvent tolerance. Extremophiles 7:371–376

  27. Shimizu K, Hayashi S, Doukyu N, Kobayashi T, Honda H (2005a) Time-course data analysis of gene expression profiles reveals purR regulon concerns in organic solvent tolerance in Escherichia coli. J Biosci Bioeng 99:72–74

  28. Shimizu K, Hayashi S, Kako T, Suzuki M, Tsukagoshi N, Doukyu N, Kobayashi T, Honda H (2005b) Discovery of glpC, an organic solvent tolerance-related gene in Escherichia coli using gene expression profiles from DNA microarrays. Appl Environ Microbiol 71:1093–1096

  29. Siegert R, Leroux MR, Scheufler C, Hartl FU, Moarefi I (2000) Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621–632

  30. Sikkema J, de Bont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

  31. Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL (2006) GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter cerescentus. J Bacteriol 188:8044–8053

  32. Topanurak S, Sinchaikul S, Phutrakul S, Sookkheo B, Chen ST (2005) Proteomic viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 5:3722–3730

  33. Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J (1994) Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176:6148–6152

  34. Tsukagoshi N, Aono R (2000) Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J Bacteriol 182:4803–4810

  35. Vainberg IE, Lewis SA, Rommelaere H, Ampe C, Vandekerckhove J, Klein HL, Cowan NJ (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. Cell 93:863–873

  36. Zhang W, Needham DL, Coffin M, Rooker A, Hurban P, Tanzer MM, Shuster JR (2003) Microarray analyses of the metabolic responses of Saccharomyces cerevisiae to organic solvent dimethyl sulfoxide. J Ind Microbiol Biotechnol 30:57–69

Download references

Acknowledgement

This study was partially supported by Grant in Aid for Scientific Research from the Japan Society for the Promotion of Science, No.17560688.

Author information

Correspondence to Mina Okochi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okochi, M., Kanie, K., Kurimoto, M. et al. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 79, 443–449 (2008). https://doi.org/10.1007/s00253-008-1450-1

Download citation

Keywords

  • Organic solvent tolerance
  • Prefoldin
  • Chaperone activity