Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development of a novel continuous culture device for experimental evolution of bacterial populations

Abstract

The availability of a robust and reliable continuous culture apparatus that eliminates wall growth problems would lead to many applications in the microbial field, including allowing genetically engineered strains to recover high fitness, improving biodegradation strains, and predicting likely antibiotic resistance mechanisms. We describe the design and implementation of a novel automated continuous culture machine that can be used both in time-dependent mode (similar to a chemostat) and turbidostat modes, in which wall growth is circumvented through the use of a long, variably divisible tube of growth medium. This tube can be restricted with clamps to create a mobile growth chamber region in which static portions of the tube and the associated medium are replaced together at equal rates. To functionally test the device as a tool for re-adaptation of engineered strains, we evolved a strain carrying a highly deleterious deletion of Elongation Factor P, a gene involved in translation. In 200 generations over 2 weeks of dilution cycles, the evolved strain improved in generation time by a factor of three, with no contaminations and easy manipulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aoki H, Dekany K, Adams SL, Ganoza MC (1997) The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J Biol Chem 272:32254–32259

  2. Bonomo J, Warnecke T, Hume P, Marizcurrena A, Gill RT (2006) A comparative study of metabolic engineering anti-metabolite tolerance in Escherichia coli. Metab Eng 8:227–239

  3. Bryson V, Szybakski W (1952) Microbial selection. Science 116:45–51

  4. de Crécy E (2005) Continuous culture apparatus with mobile vessel allowing selection of fitter cell variants. WO/2005/083052

  5. de Crécy-Lagard VA, Bellalou J, Mutzel R, Marlière P (2001) Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli. BMC Biotechnol 1:10

  6. Dykhuizen DE (1993) Chemostats used for studying natural selection and adaptive evolution. Methods Enzymol 224:613–631

  7. Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47:150–168

  8. Fong SS, Palsson BO (2004) Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet 36:1056–1058

  9. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol Bioeng 91:643–648

  10. Fong SS, Nanchen A, Palsson BO, Sauer U (2006) Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J Biol Chem 281:8024–8033

  11. Ganoza MC, Aoki H (2000) Peptide bond synthesis: function of the efp gene product. Biol Chem 381:553–559

  12. Helling RB, Kinney T, Adams J (1981) The maintenance of plasmid-containing organisms in populations of Escherichia coli. J Gen Microbiol 123:129–141

  13. Larsen DH, Dimmick RL (1964) Attachment and growth of bacteria on surfaces of continuous culture vessels. J Bacteriol 88:1380–1387

  14. Lenski RE (1993) Evaluating the fate of genetically modified microorganisms in the environment: are they inherently less fit? Experientia 49:201–209

  15. Lenski RE, Travisano M (1994) Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 91:6808–6814

  16. Metzgar D, Bacher JM, Pezo V, Reader J, Döring V, Schimmel P, Marlière P, de Crécy-Lagard V (2004) Acinetobacter sp. ADP1: an ideal model organism for genetic analysis and genome engineering. Nucleic Acids Res 32:5780–5790

  17. Meynial-Salles I, Forchhammer N, Croux C, Girbal L, Soucaille P (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Metab Eng 9:152–159

  18. Monod J (1950) La technique de culture continue. Théorie et applications. Ann Inst Pasteur 19:390–410

  19. Mutzel R, Mazel D, Marlière P (2003) Method for obtaining cells with new properties WO 03/004656

  20. Notley-McRobb L, Ferenci T (1999) The generation of multiple co-existing mal-regulatory mutations through polygenic evolution in glucose-limited populations of Escherichia coli. Environ Microbiol 1:45–52

  21. Novick A, Szilard L (1950a) Description of the chemostat. Science 112:715–716

  22. Novick A, Szilard L (1950b) Experiments with the chemostat on spontaneous mutations of bacteria. Proc Natl Acad Sci USA 36:708–719

  23. Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264:388–393

  24. Swaney S, McCroskey M, Shinabarger D, Wang Z, Turner BA, Parker CN (2006) Characterization of a high-throughput screening assay for inhibitors of elongation factor p and ribosomal peptidyl transferase activity. J Biomol Screen 11:736–742

  25. Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998) Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449

  26. Wahl LM, Gerrish PJ, Saika-Voivod I (2002) Evaluating the impact of population bottlenecks in experimental evolution. Genetics 162:961

  27. Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10% (w/v) sugar to D: (−)-lactate by engineered Escherichia coli B. Biotech Lett 27:1891–1896

Download references

Acknowledgements

We thank Phillippe Marlière for inspiration, Paul Schimmel for encouragements in the initial stages of the project, and Daniel Dykhuizen for critical reading of the manuscript. V d C-L work was funded in part by grant MCB-0128901 from the National Science Foundation.

Author information

Correspondence to V. de Crécy-Lagard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Crécy, E., Metzgar, D., Allen, C. et al. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl Microbiol Biotechnol 77, 489–496 (2007). https://doi.org/10.1007/s00253-007-1168-5

Download citation

Keywords

  • Experimental evolution
  • Continuous culture
  • Turbidostat
  • Natural selection
  • Adaptation
  • Metabolic engineering
  • Biodegradation