Advertisement

Applied Microbiology and Biotechnology

, Volume 78, Issue 2, pp 319–331 | Cite as

Oleic acid delays and modulates the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae after exposure to glucose excess

  • David Feria-Gervasio
  • Jean-Roch Mouret
  • Nathalie Gorret
  • Gérard Goma
  • Stéphane E. GuillouetEmail author
Applied Microbial and Cell Physiology

Abstract

This work aimed to study the transition from respiratory to fermentative metabolism in Saccharomyces cerevisiae CEN.PK 113-7D and more specifically to evaluate the implication of the acetyl-coenzymeA-derived carbon transport from cytosol to mitochondria in the onset of the metabolic shift. The strategy consisted in introducing, during aerobic glucose-limited chemostat (D = 0.16 h1), a local perturbation around the step to be studied by the addition of cosubstrate and in analyzing the consequences of such a perturbation on the metabolic transition. Oleic acid and l-carnitine were among the tested cosubstrates because they were known to stimulate enzymes implicated in the acetyl-coenzymeA transport between the different cell compartments, such as the carnitine acetyl transferases. The metabolic transition was then comparatively quantified in sole glucose and in glucose/oleic acid chemostats in presence/absence of l-carnitine after a pulse of glucose. Feeding the culture with oleic acid (Dole = 0.0041 and 0.0073 h1) led to a delay in the onset of the metabolic shift (up to 15 min), a 33% decrease in the ethanol production and a redirection of the carbon flux toward biomass production. The data clearly showed a modulation of the carbon distribution among respiration and fermentation, in favor of a decrease in the “short-term” Crabtree effect by the oleic acid.

Keywords

Crabtree effect Saccharomyces Ethanolic fermentation Oleic acid Carnitine Carnitine acetyl transferase 

Notes

Acknowledgment

We thank Prof. J. Nielsen for giving us the opportunity to carry out isotopic labeling experiment in his laboratory at T.U. Lyngby (Denmark) and for his helpful discussion. J.R. Mouret was supported by a doctoral grant from the French Ministry of Education and Research and during his stay in Lyngby from the Federation of European Microbiological Societies. D. Feria-Gervasio gratefully acknowledges financial doctoral support by the Conacyt (Mexico).

References

  1. Bieber LL (1988) Carnitine. Annu Rev Biochem 57:261–283PubMedGoogle Scholar
  2. Blom J, De Mattos MJ, Grivell LA (2000) Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p. Appl Environ Microbiol 66:1970–1973PubMedPubMedCentralGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Casalone E, Barberio C, Cavalieri D, Polsinelli M (2000) Identification by functional analysis of the gene encoding alpha-isopropylmalate synthase II (LEU9) in Saccharomyces cerevisiae. Yeast 16:539–545PubMedGoogle Scholar
  5. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23:536–545PubMedPubMedCentralGoogle Scholar
  6. De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156PubMedGoogle Scholar
  7. De Jong-Gubbels P, Vanrolleghem P, Heijnen S, van Dijken JP, Pronk JT (1995) Regulation of carbon metabolism in chemostat cultures of Saccharomyces cerevisiae grown on mixtures of glucose and ethanol. Yeast 11(5):407–418PubMedGoogle Scholar
  8. De Jong-Gubbels P, van den Berg MA, Luttik MA, Steensma HY, van Dijken JP, Pronk JT (1998) Overproduction of acetyl-coA synthetase isoenzymes in respiring Saccharomyces cerevisiae cells does not reduce acetate production after exposure to glucose excess. FEMS Microbiol Lett 165:15–20PubMedGoogle Scholar
  9. Elgersma H, van Roermund CV, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14:3472–3479PubMedPubMedCentralGoogle Scholar
  10. Fiechter A, Fuhrmann GF, Käppeli O (1981) Regulation of glucose metabolism in growing yeast cells. Adv Microbiol Physiol 22:123–183Google Scholar
  11. Flikweert MT, Kuyper M, Van Maris AJA, Kötter O, Van Dijken JP, Pronk JT (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66:42–50PubMedGoogle Scholar
  12. Francois J, Parrou JL (2001) Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 25:125–45PubMedGoogle Scholar
  13. Gombert AK, dos Santos MM, Christensen B, Nielsen J (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J Bacteriol 183:1441–1451PubMedPubMedCentralGoogle Scholar
  14. Gonzalez B, Francois J, Renaud M (1997) A rapid and reliable method for metabolite extraction in yeast using boiling buffered ethanol. Yeast 13:1347–1355Google Scholar
  15. Groussac E, Ortiz M, François J (2000) Improved protocols for quantitative determination of metabolites from biological samples using high performance ionic-exchange chromatography with conductimetric and pulse amperometric detection. Enzyme Microb Technol 26:715–723PubMedGoogle Scholar
  16. Hajjaj H, Blanc PJ, Goma G, François J (1998) Sampling techniques and comparative extraction procedures for quantitative determination of intra- and extracellular metabolites in filamentous fungi. FEMS Microbiol Lett 164:185–200Google Scholar
  17. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal β-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64PubMedGoogle Scholar
  18. Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Groot KM, Albermann K, Strack N, Ruijter JM, Richter A, Dujon AB, Ansorge W, Tabak HF (1999) Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol Biol Cell 10:1859–1872PubMedPubMedCentralGoogle Scholar
  19. Käppeli O (1986) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28:181–209PubMedGoogle Scholar
  20. Karpichev IV, Small GM (1998) Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 18:6560–6570PubMedPubMedCentralGoogle Scholar
  21. Kispal G, Cseko J, Alkonyi JI, Sandor A (1991) Isolation and characterization of carnitine acetyltransferase from Saccharomyces cerevisiae. Biochim Biophys Acta 1085(2):217–222PubMedGoogle Scholar
  22. Kispal G, Sumegi B, Dietmeier K, Bock I, Gajdos G, Tomcsanyi T, Sandor A (1993) Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. Use of the cDNA in gene disruption studies. J Biol Chem 268:1824–1829PubMedGoogle Scholar
  23. Klein CJL, Rasmussen JJ, Rønnow B, Olsson L, Nielsen J (1999) Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae. J Biotechnol 68:197–212PubMedGoogle Scholar
  24. Koerkamp MG, Rep M, Bussemaker HJ, Hardy GP, Mul A, Piekarska K, Szigyarto CA, De Mattos JM, Tabak HF (2002) Dissection of transient oxidative stress response in Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 13:2783–2794PubMedPubMedCentralGoogle Scholar
  25. Kohlhaw GB (1988) Alpha-isopropylmalate synthase from yeast. Methods Enzymol 166:414–423PubMedGoogle Scholar
  26. Lange HC, Heijnen JJ (2001) Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75:334–344PubMedGoogle Scholar
  27. Palmieri L, Lasorsa FM, De Palma A, Palmieri F, Runswick MJ, Walker JE (1997) Identification of the yeast ACR1 gene product as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett 417:114–118PubMedGoogle Scholar
  28. Palmieri L, Lasorsa FM, Iacobazzi V, Runswick MJ, Palmieri F, Walker JE (1999) Identification of the mitochondrial carnitine carrier in Saccharomyces cerevisiae. FEBS Lett 462:472–476PubMedGoogle Scholar
  29. Palmieri L, Runswick MJ, Fiermonte G, Walker JE, Palmieri F (2000) Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J Bioenerg Biomembranes 32:67–77Google Scholar
  30. Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short-term and long-term regulation. J Gen Microbiol 129:43–49Google Scholar
  31. Poilpre E, Tronquit D, Goma G, Guillou V (2002) On-line estimation of biomass concentration during transient growth on yeast chemostat culture using light reflectance. Biotechnol Lett 24:2075–2081Google Scholar
  32. Postma E, Verduyn C, Scheffers WA, Van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477PubMedPubMedCentralGoogle Scholar
  33. Pronk JT, de Steensma HY, Van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633PubMedGoogle Scholar
  34. Roels JA (1983) Macroscopic theory, and microbial growth and product formation. In: Energetics and kinetics in biotechnology. Elsevier Biomedical Press, Amsterdam, pp 23–75Google Scholar
  35. Schmalix W, Bandlow W (1993) The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferases. J Biol Chem 268:27428–27439PubMedGoogle Scholar
  36. Swiegers JH, Dippenaar N, Pretorius IS, Bauer FF (2001) Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18:585–595PubMedGoogle Scholar
  37. Tabak HF, Elgersma Y, Hettema E, Franse MM, Voorn-Brouwer T, Distel B (1995) Transport of proteins and metabolites across the impermeable membrane of peroxisomes. Cold Spring Harb Symp Quant Biol 60:649–655PubMedGoogle Scholar
  38. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique. Anal Biochem 214:31–37PubMedGoogle Scholar
  39. Thevenieau F, Le Dall MT, Nthangeni B, Mauersberger S, Marchal R, Nicaud JM (2007) Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol 44(6):531–542PubMedGoogle Scholar
  40. Trotter PJ (2001) The genetics of fatty acid metabolism in Saccharomyces cerevisiae. Ann Rev Nutr 21:97–119Google Scholar
  41. Van den Berg MA, de Jong-Gubbels P, Steensma HY (1998) Transient mRNA responses in chemostat cultures as a method of defining putative regulatory elements: application to genes involved in Saccharomyces cerevisiae acetyl-coA metabolism. Yeast 14:1089–1104PubMedGoogle Scholar
  42. Van Dijken JP, Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  43. Van Hoek P, van Dijken JP, Pronk JT (2000) Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Technol 26:724–736PubMedGoogle Scholar
  44. Van Maris JA, Bakker BM, Brandt M, Boorsma A, Teixeira de Mattos MJ, Pronk JT, Blom J (2001) Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae. FEMS Yeast Res 1:139–149PubMedGoogle Scholar
  45. Van Roermund CW, Elgersma Y, Singh N, Wanders RJ, Tabak HF (1995) The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14:3480–3486PubMedPubMedCentralGoogle Scholar
  46. Van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J 18:5843–5852PubMedPubMedCentralGoogle Scholar
  47. Van Roermund CWT, Waterham HR, Ijlst L, Wanders RJ (2003) Fatty acid metabolism in Saccharomyces cerevisiae. Cell Mol Life Sci 60:1838–1851PubMedGoogle Scholar
  48. Van Urk H, Schipper D, Breedveld GJ, Mak PR, Scheffers WA, van Dijken JP (1989) Localization and kinetics of pyruvate-metabolizing enzymes in relation to aerobic alcoholic fermentation in Sacharomyces cerevisiae CBS 8066 and Candida utilis CBS 621. Biochem Biophys Acta 992:78–86PubMedGoogle Scholar
  49. Verduyn C, Postma E, Scheffers WA, Van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David Feria-Gervasio
    • 1
  • Jean-Roch Mouret
    • 1
  • Nathalie Gorret
    • 1
  • Gérard Goma
    • 1
  • Stéphane E. Guillouet
    • 1
    Email author
  1. 1.UMR5504, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSAToulouse CedexFrance

Personalised recommendations