Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R

  • 419 Accesses

  • 31 Citations


Corynebacterium glutamicum R adhA gene encodes a homodimeric, NAD-dependent, 345 amino acid residue alcohol dehydrogenase with two zinc ions per subunit. Chromosomal inactivation of the adhA gene rendered the strain incapable of growth on either ethanol or n-propanol as the sole carbon source. RNA hybridization analysis revealed that adhA transcription was not only induced by these two substrates, but it was also subject to glucose catabolite repression. Accordingly, both induction of AdhA activity and ethanol utilization were detected only after depletion of glucose. Deletion of either or both of potential cyclic adenosine monophosphate (cAMP) receptor binding site and an inverted repeat of sequence 5′-GCAATTGATG-N 8-CACAATTGC-3′ in the promoter region of adhA strongly suggested that IR, which does not share significant similarity with other regulatory DNA elements of C. glutamicum, represents a transcriptional repressor binding site. Purified recombinant AdhA displayed the highest substrate specificities towards ethanol and n-propanol and their corresponding aldehydes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Amador EJ, Castro JM, Correia A, Martín JF (1999) Structure and organization of the rrnD operon of ‘Brevibacterium lactofermentum’: analysis of the 16S rRNA gene. Microbiology 145:915–924

  2. Busenlehner LS, Pannella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into procaryotic metal resistance. FEMS Microbiol Rev 27:131–143

  3. Cerdeño-Tárraga AM, Efstratiou A, Dover LG, Holden MTG, Pallen M, Bentley SD, Besra GS, Churcher C, James KD, De Zoysa A, Chillingworth T, Cronin A, Dowd L, Feltwell T, Hamlin N, Holroyd S, Jangels K, Moule S, Quail MA, Rabbinowitsch E, Rutherford KM, Thomson NR, Unwin L, Whitehead S, Barrell BG, Parkhill J (2003) The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523

  4. Cocaign M, Monnet C, Lindley ND (1993). Batch kinetics of Corynebacterium glutamicum during growth on various substrates: use of substrate mixtures to localize metabolic bottlenecks. Appl Microbiol Biotechnol 40:526–530

  5. De Bruyn J, Johannes A, Weckx M, Beumer-Jochmans MP (1984) Partial purification and charakterization of an alcohol dehydrogenase of Mycobacterium tuberculosis var. bovis (BCG). J Gen Microbiol 124:359–363

  6. de Crombrugghe B, Busby S, Buc H (1984) Cyclic-AMP receptor protein: role in transcription activation. Science 224:831–838

  7. Dominguez H, Cocaign-Bousquet M, Lindley ND (1997) Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl Microbiol Biotechnol 47:600–603

  8. Dumay V, Vertès AA, Asai A, Inui M, Kobayashi M, Yukawa H (1995) Cyclic adenosine 3′,5′-monophosphate and coryneform bacteria. FEMS Microbiol Lett 133:239–244

  9. Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

  10. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ (2004) RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 186:2798–2809

  11. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

  12. Inoue J, Tomioka N, Itai A, Harayama S (1998) Proton transfer in benzyl alcohol dehydrogenasa during catalysis: alternate proton-relay routes. Biochemistry 37:3305–3311

  13. Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

  14. Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolite engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

  15. Ismaiel AA, Zhu CX, Colby GD, Chen JS (1993) Purification and characterization of a primary–secondary alcohol dehydrogenase from two strains of Clostridium beijerinckii. J Bacteriol 175:5097–5105

  16. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

  17. Kim HJ, Kim TH, Kim Y, Lee HS (2004) Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460

  18. Kotrba P, Inui M, Yukawa H (2001) The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313

  19. Kotrba P, Inui M, Yukawa H (2003) A single V317A or V317M substitution in Enzyme II of a newly identified β-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology 149:1569–1580

  20. Kronemeyer WN, Peekhaus N, Kramer R, Sahm H, Eggeling L (1995) Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol 177:1152–1158

  21. Krug A, Wendisch VF, Bott M (2005) Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum. J Biol Chem 280:585–595

  22. Lessard PA, Guillouet S, Willis LB, Sinskey AJ (1999) Corynebacteria, Brevibacteria. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. Wiley, New York, pp 729–740

  23. Letek M, Valbuena N, Ramos A, Ordonez E, Gil JA, Mateos LM (2006) Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423

  24. Levin I, Meiri G, Peretz M, Burstein Y, Frolow F (2004) The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol. Protein Sci 13:1547–1556

  25. Nagy I, Verheijen S, De Schrijver A, Van Damme J, Proost P, Schoofs G, Vanderleyden J, De Mot R (1995) Characterization of the Rhodococcus sp. NI86/21 gene encoding alcohol: N,N′-dimethyl-4-nitrosoaniline oxidoreductase inducible by atrazine and thiocarbamate herbicides. Arch Microbiol 163:439–446

  26. Nakata K, Inui M, Kos PB, Vertès AA, Yukawa H (2004) Vectors for genetic engineering of corynebacteria. In: Saha BC (ed) Fermentation biotechnology. American Chemical Society, Washington DC, pp 175–191

  27. Nishio Y, Nakamura Y, Kawarabayasi Y, Usuda Y, Kimura E, Sugimoto S, Matsui K, Yamagishi A, Kikuchi H, Ikeo K, Gojobori T (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13:1572–1579

  28. Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

  29. Parche S, Burkowski A, Sprenger GA, Weil B, Krämer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428

  30. Patek M, Nesvera J, Guyonvarch A, Reyes O, Leblon G (2003) Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323

  31. Plumbridge J (2001) DNA binding sites for the Mlc and NagC proteins: regulation of nagE, encoding the N-acetylglukosamine-specific transported in Escherichia coli. Nucleic Acid Res 29:506–514

  32. Priefert H, Kruger N, Jendrossek D, Schmidt B, Steinbuchel A (1992) Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase II (acoD) of Alcaligenes eutrophus. J Bacteriol 173:4056–4071

  33. Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56

  34. Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol Microbiol 56:871–887

  35. Sambrook J, Russell DW (2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory, New York

  36. Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Pühler A (2005) Complete genome sequence and analysis of multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682

  37. Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalyst. Marcel Dekker, New York, pp 37–52

  38. Terawasa M, Kaminuma N, Shikata K, Yukawa H (1989) New process for l-isoleucine production. Process Biochem 24:60–61

  39. Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144:181–185

  40. Willis LB, Walker GC (1998) Identification of the Rhizobium meliloti alcohol dehydrogenase gene (adhA) and heterologous expression in Alcaligenes eutrophus. Biochim Biophys Acta 1384:197–203

  41. Yoon S-Y, Noh H-S, Kim EH, Kong K-H (2002) The highly stable alcohol dehydrogenase of Thermomicrobium roseum: purification and molecular characterization. Comp Biochem Physiol B 132:415–522

  42. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

Download references


We thank Crispinus Omumasaba for helpful discussions and critical reading of the manuscript. This work was supported by a grant from the Ministry of Economy, Trade and Industry (METI) and from the Czech Ministry of Education (MSM 6046137305).

Author information

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kotrbova-Kozak, A., Kotrba, P., Inui, M. et al. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and n-propanol utilization in Corynebacterium glutamicum R. Appl Microbiol Biotechnol 76, 1347–1356 (2007). https://doi.org/10.1007/s00253-007-1094-6

Download citation


  • Alcohol dehydrogenase
  • Ethanol
  • Corynebacterium glutamicum
  • Catabolite repression