Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp

Abstract

Three endoxylanase genes were cloned from the thermophilic fungus Chaetomium thermophilum CBS 730.95. All genes contained the typical consensus sequence of family 11 glycoside hydrolases. Genomic copies of Ct xyn11A, Ct xyn11B, and Ct xyn11C were expressed in the filamentous fungus T. reesei under the control of the strong T. reesei cel7A (cellobiohydrolase 1, cbh1) promoter. The molecular masses of the Ct Xyn11A, Ct Xyn11B, and Ct Xyn11C proteins on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were 27, 23, and 22 kDa, respectively. Ct Xyn11A was produced almost as efficiently as the homologous xylanase II from a corresponding single-copy transformant strain. Ct Xyn11B production level was approximately half of that of Ct Xyn11A. The amount of Ct Xyn11C was remarkably lower. Ct Xyn11A had the highest temperature optimum and stability of the recombinant xylanases and the highest activity at acid-neutral pH (pH 5–7). It was the most suitable for industrial bleaching of kraft pulp at high temperature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

  2. Baraznenok VA, Becker EG, Ankudimova NV, Okunev NN (1999) Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb Technol 25:651–659

  3. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbial Biotechnol 56:326–338

  4. Faria FP, Te’o VSJ, Bergquist PL, Azevedo MO (2002) Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett Appl Microbiol 34:119–123

  5. Gandhi JP, Rao KK, Dave PJ (1994) Characterization of extracellular thermostable xylanase from Chaetomium globosum. J Chem Biotechnol 60:55–60

  6. Ganju RK, Vithayathil PJ, Murthy SK (1989) Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol 35:836–842

  7. Hakulinen N, Turunen O, Jänis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomurea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

  8. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

  9. Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770

  10. Karhunen T, Mäntylä A, Nevalainen KMH, Suominen PL (1993) High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet 241:515–522

  11. Lappalainen A, Siika-aho M, Kalkkinen N, Fagerström R (2000) Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points. Biotechnol Appl Biochem 31:61–68

  12. Leskinen S, Mäntylä A, Fagerström R, Vehmaanperä J, Lantto R, Paloheimo M, Suominen P (2005) Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl Microbiol Biotechnol 67:495–505

  13. Mäntylä A, Saarelainen R, Fagerström R, Suominen P, Nevalainen H (1994) Cloning of the aspartic protease gene of Trichoderma reesei. In: Second European Conference on Fungal Genetics, Lunteren, The Netherlands, Abstract B52

  14. Mäntylä A, Paloheimo M, Suominen P (1998) Industrial mutants and recombinant strains of Trichoderma reesei. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol. 2, Taylor and Francis, London, United Kingdom, pp 291–309

  15. Mimura S, Rao U, Yoshino S, Kato M, Tsukagoshi N (1998) Derepression of the xylanase-encoding cgxA gene of Chaetomium gracile in Aspergillus nidulans. Microbiol Res 153:369–376

  16. Nevalainen KMH, Te’o VSJ (2003) Enzyme production in industrial fungi —strategies for integrated strain improvement. In: Arora DK, Khachatourians GG (eds) Appl Mycol Biotechnol, vol. 3, fungal genetics. Elsevier, The Netherlands, pp 241–259

  17. Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

  18. Paloheimo M, Mäntylä A, Kallio J, Suominen P (2003) High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol 69:7073–7082

  19. Penttilä M (1998) Heterologous protein production in Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol. 2. Taylor and Francis, London, United Kingdom, pp 365–382

  20. Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

  21. Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

  22. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

  23. Rao U, Marui J, Kato M, Kobayashi T, Tsukagoshi N (2002) Regulation of the xylanase gene, cgxA, from Chaetomium gracile by transcriptional factors, XlnR and AnRP. Biotechnol Lett 24:1089–1096

  24. Rao U, Kato M, Tsukagoshi N (2003) Characterization of AnRP-mediated negative regulation of the xylanase gene, cgxA, from Chaetomium gracile in Aspergillus nidulans. Lett Appl Microbiol 36:59–63

  25. Saarelainen R, Paloheimo M, Fagerstöm R, Suominen PL, Nevalainen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol Gen Genet 241:497–503

  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  27. Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

  28. Suurnäkki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng Biotechnol 57:261–287

  29. Te’o VSJ, Czifersky AE, Bergquist PL, Nevalainen KMH (2000) Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol Lett 190:13–19

  30. Törrönen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology 10:1461–1465

  31. Yoshino S, Oishi M, Moriyama R, Kato M, Tsukagoshi N (1995) Two family G xylanase genes from Chaetomium gracile and their expression in Aspergillus nidulans. Curr Genet 29:73–80

Download references

Acknowledgment

We thank Varpu Backman, Merja Helanterä, Sanna Hiljanen-Berg, Kirsti Leskinen, Outi Nikkilä, Jaana Oksanen, and Riitta Tarkiainen for skillful technical assistance. Sirpa Holm, Sirpa Okko, Elke Parkkinen, Auli Sinnemäki, and Tarja Sjöblom are thanked for performing the laboratory-scale fermentations. Nisse Kalkkinen is acknowledged for performing the peptide analyses and mass spectrometry. George Szakacs is acknowledged for kindly providing the C. thermophilum host strain and David Wilson for the T. fusca TfxA antibody. Nina Hakulinen and Richard Fagerström are thanked for useful discussions. John Londesborough is acknowledged for critically reading the manuscript and for correcting the language.

Author information

Correspondence to Arja Mäntylä.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mäntylä, A., Paloheimo, M., Hakola, S. et al. Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl Microbiol Biotechnol 76, 377–386 (2007). https://doi.org/10.1007/s00253-007-1020-y

Download citation

Keywords

  • Xylanase Activity
  • Kraft Pulp
  • Kappa Number
  • Thermophilic Fungus
  • Xylanase Gene