Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions


Enzymes are able to perform reactions under mild conditions, e.g., pH and temperature, with remarkable chemo-, regio-, and stereoselectivity. Due to this feature the number of biocatalysts used in organic synthesis has rapidly increased during the last decades, especially for the production of chiral compounds. The present review highlights biotechnological processes for the production of chiral alcohols by reducing prochiral ketones with whole cells. Microbial transformations feature different characteristics in comparison to isolated enzymes. Enzymes that are used in whole-cell biotransformations are often more stable due to the presence of their natural environment inside the cell. Because reductase-catalyzed reactions are dependent on cofactors, one major task in process development is to provide an effective method for regeneration of the consumed cofactors. Many whole-cell biocatalysts offer their internal cofactor regeneration that can be used by adding cosubstrates, glucose or, in the case of cyanobacteria, simply light. In this paper, various processes carried out on laboratory and industrial scales are presented. Thereby, attention is turned to process parameters, e.g., conversion, yield, enantiomeric excess, and process strategies, e.g., the application of biphasic systems. The biocatalytic production of chiral alcohols utilizing isolated enzymes is presented in part I of this review (Goldberg et al., Appl Microbiol Biotechnol, 2007).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Amidjojo M, Weuster-Botz D (2005) Asymmetric synthesis of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutanoate using Lactobacillus kefir. Tetrahedron Asymmetry 16:899–901

  2. Amidjojo M, Franco-Lara E, Nowak A, Link H, Weuster-Botz D (2005) Asymmetric synthesis of tert-butyl (3R,5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir. Appl Microbiol Biotechnol 69:9–15

  3. Bertau M, Burli M (2000) Enantioselective microbial reduction with baker’s yeast on an industrial scale. Chimia 54:503–507

  4. Blacklock TJ, Sohar P, Butcher JW, Lamanec T, Grabowski EJJ (1993) An enantioselective synthesis of the topically-active carbonic anhydrase inhibitor MK-0507: 5,6-dihydro-(S)-4-(ethylamino)-(S)-6-methyl-4H-thieno[ 2,3-b]thiopyran-2-sulfonamide 7,7-dioxide hydrochloride. J Org Chem 58:1672–1679

  5. Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T (2004) Industrielle Verfahren zur Herstellung von optisch aktiven Zwischenprodukten. Angew Chem 116:806–843, Angew Chem Int Ed 43:788–824

  6. Chartrain M, Roberge C, Chung J, McNamara J, Zhao D, Olewinski R, Hunt G, Salmon P, Roush D, Yamazaki S, Wang T, Grabowski E, Buckland B, Greasham R (1999) Asymmetric bioreduction of (2-(4-nitro-phenyl)-N-(2-oxo-2-pyridin-3-yl-ethyl)-acetamide) to its corresponding (R)-alcohol [(R)-N-(2-hydroxy-2-pyridin-3-yl-ethyl)-2-(4-nitro-phenyl)-acetamide] by using Candida sorbophila MY 1833. Enzyme Microb Technol 25:489–496

  7. Csuk R (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97

  8. Edegger K, Stampfer W, Seisser B, Faber K, Mayer SF, Oehrlein R, Hafner A, Kroutil W (2006a) Regio- and stereoselective reduction of diketones and oxidation of diols by biocatalytic hydrogen transfer. Eur J Org Chem 2006(8):1904–1909

  9. Edegger K, Gruber CC, Faber K, Hafner A, Kroutil W (2006b) Optimization of reaction parameters and cultivation conditions for biocatalytic hydrogen transfer employing overexpressed ADH-′A′ from Rhodococcus ruber DSM 44541 in Escherichia coli. Eng Life Sci 6:149–154

  10. Engelking H, Pfaller R, Wich G, Weuster-Botz D (2006) Reaction engineering studies on β-ketoester reductions with whole cells of recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 38:536–544

  11. Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634

  12. Faber K (2004) Biotransformations in organic chemistry, 5th edn. Springer, Berlin Heidelberg New York

  13. Floyd DM, Moquin RV, Atwal KS, Ahmed SZ, Spergel SH, Gougoutas JZ, Malley MF (1990) Synthesis of benzazepinone and 3-methylbenzothiazepinone analogues of diltiazem. J Org Chem 55:5572–5579

  14. Goldberg K, Edegger K, Kroutil W, Liese A (2006) Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol Bioeng 95:192–198

  15. Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Appl Microbiol Biotechnol (in this issue)

  16. Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselektive Ketonreduktion mit “Designerzellen” bei hohen Substratkonzentrationen: hocheffizienter Zugang zu funktionalisierten optisch aktiven Alkoholen. Angew Chem 118:5806–5809, Angew Chem Int Ed 45:5677–5681

  17. Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A (2002a) Diastereoselective synthesis of optically active (2R,5R)-hexanediol. Appl Microbiol Biotechnol 58:595–599

  18. Haberland J, Hummel W, Daußmann T, Liese A (2002b) New continuous production process for enantiopure (2R,5R)-hexanediol. Org Process Res Dev 6:458–462

  19. Havel J, Weuster-Botz D (2006) Comparative study of cyanobacteria as biocatalysts for the asymmetric synthesis of chiral building blocks. Eng Life Sci 6:175–179

  20. Holt RA (1996) Microbial asymmetric reduction in the synthesis of a drug intermediate. Chim Oggi 14:17–20

  21. Jones TK, Mohan JJ, Xavier LC, Blacklock TJ, Mathre DJ, Sohar P, Turner Jones ET, Reamer RA, Roberts FE, Grabowski EJJ (1991) An asymmetric synthesis of MK-0417. Observations on oxazaborolidine-catalyzed reductions. J Org Chem 56:763–769

  22. Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70:342–345

  23. Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

  24. Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka·M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

  25. Nakamura K, Matsuda T (2002) Reduction of ketones. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol. III, 2nd edn. Wiley–VCH Verlag GmbH, Weinheim, pp 991–1047

  26. Nakamura K, Yamanaka R, Tohi K, Hamada H (2000) Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett 41:6799–6802

  27. Nanduri VB, Hanson RL, Goswami A, Wasylyk JM, LaPorte TL, Katipally K, Chung HJ, Patel RN (2001) Biochemical approaches to the synthesis of ethyl 5-(S)-hydroxyhexanoate and 5-(S)-hydroxyhexanenitrile. Enzyme Microb Technol 28:632–636

  28. Patel RN, Robison RS, Szarka LJ, Kloss J, Thottathil JH, Muller RH (1991) Stereospecific microbial reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl-1H-1)-benzazepin-2-one. Enzyme Microb Technol 13:906–912

  29. Patel RN, McNamee CG, Banerjee A, Howell JM, Robison RS, Szarka LJ (1992) Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme Microb Technol 14:731–738

  30. Patel RN, Chu L, Chidambaram R, Zhu J, Kant J (2002) Enantioselective microbial reduction of 2-oxo-2-(1′,2′,3′,4′-tetrahydro-1′,1′,4′,4′-tetramethyl-6′-naphthalenyl)acetic acid and its ethyl ester. Tetrahedron Asymmetry 13:349–355

  31. Peters J, Zelinski T, Kula MR (1992) Studies on the distribution and regulation of microbial keto ester reductases. Appl Microbiol Biotechnol 38:334–340

  32. Rodriguez S, Kayser M, Stewart JD (1999) Improving the stereoselectivity of bakers’ yeast reductions by genetic engineering. Org Lett 1:1153–1155

  33. Rodriguez S, Kayser MM, Stewart JD (2001) Highly stereoselective reagents for β-keto ester reductions by genetic engineering of baker’s yeast. J Am Chem Soc 123:1547–1555

  34. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

  35. Shih TL, Candelore MR, Cascieri MA, Chiu SHL, Colwell LF, Jr, Deng L, Feeney WP, Forrest MJ, Hom GJ, Maclntyre DE, Miller RR, Stearns RA, Strader CD, Tota L, Wyvratt MJ, Fisher MH, Weber AE (1999) L-770,644: a potent and selective human β3 adrenergic receptor agonist with improved oral bioavailability. Bioorg Med Chem Lett 9:1251–1254

  36. Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K (2002) Biocatalytic asymmetric hydrogen transfer. Angew Chem 114:1056–1059, Angew Chem Int Ed 41:1014–1017

  37. Stampfer W, Edegger K, Kosjek B, Faber K, Kroutil W (2004) Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv Synth Catal 346:57–62

  38. Stewart JD (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr Opin Chem Biol 5:120–129

  39. Tan AWI, Fischbach M, Huebner H, Buchholz R, Hummel W, Daußmann T, Wandrey C, Liese A (2006) Synthesis of enantiopure (5R)-hydroxyhexane-2-one with immobilized whole cells of Lactobacillus kefiri. Appl Microbiol Biotechnol 71:289–293

  40. Watanabe T, Koller K, Messner K (1998) Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine. J Biotechnol 62:221–230

  41. Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744

  42. Zaks A, Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2:513–531

  43. Zhang J, Witholt B, Lia Z (2006) Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase. Adv Synth Catal 348:429–433

Download references


Both Goldberg and Schroer did equally contribute to this review.

Author information

Correspondence to Andreas Liese.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, K., Schroer, K., Lütz, S. et al. Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biotechnol 76, 249–255 (2007). https://doi.org/10.1007/s00253-007-1005-x

Download citation


  • Ketone reduction
  • Whole cell biotransformation
  • Chiral alcohol