Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Genetic organization of the biosynthetic gene cluster for the indolocarbazole K-252a in Nonomuraea longicatena JCM 11136


Indolocarbazole metabolite K-252a is a natural product that was previously reported as a potent protein kinase C inhibitor with in vitro and in vivo potency. From a biosynthetic viewpoint, this compound possesses structurally interesting features such as an unusual furanosyl sugar moiety, which are absent in the well-studied staurosporine and rebeccamycin. A cosmid library from genomic DNA of Nonomuraea longicatena JCM 11136 was constructed and screened for the presence of genes to be involved in the biosynthesis of indolocarbazole K-252a. Using as a probe an internal fragment of vioB, a Chromobacterium violaceum gene encoding a multifunctional enzyme that catalyzes tryptophan decarboxylation and condensation reaction in violacein biosynthesis, we isolated a DNA region that directed the biosynthesis of K-252a when introduced into the heterologous expression host Streptomyces albus. Sequence analysis of 45 kb revealed genes for indolocarbazole core formation, glycosylation, and sugar methylation, as well as a regulatory gene and two resistance/secretion genes. The cloned genes should help to elucidate the molecular basis for indolocarbazole biosynthesis and generate new indolocarbazole analogues by genetic engineering.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Akinaga S, Sugiyama K, Akiyama T (2000) UCN-01 (7-hydroxystaurosporine) and other indolocarbazole compounds: a new generation of anti-cancer agents for the new century? Anti-cancer Drug Des 15:43–52

  2. August PR, Grossman TH, Minor C, Draper MP, MacNeil JA, Pemberton JM, Call KM, Holt D, Osburne MS (2000) Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum. J Mol Microbiol Biotechnol 2:513–519

  3. Bailly C, Qu X, Graves DE, Prudhomme M, Chaires JB (1999) Calories from carbohydrates: energetic contribution of the carbohydrate moiety of rebeccamycin to DNA binding and the effect of its orientation on topoisomerase I inhibition. Chem Biol 6:277–286

  4. Berg MM, Sternberg DW, Parada LF, Chao MV (1992) K-252a inhibits nerve growth factor-induced trk proto-oncogene tyrosine phosphorylation and kinase activity. J Biol Chem 267:13–16

  5. Bierman M, Logan R, O’Brian K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

  6. Bililign T, Hyun CG, Williams JS, Czisny AM, Thorson JS (2004) The hedamycin locus implicates a novel aromatic PKS priming mechanism. Chem Biol 11:959–969

  7. Bush JA, Long BH, Catino JJ, Bradner WT, Tomita K (1987) Production and biological activity of rebeccamycin, a novel antitumor agent. J Antibiot 40:668–678

  8. Cain BD, Norton PJ, Eubanks W, Nick HS, Allen CM (1993) Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. J Bacteriol 175:3784–3789

  9. Camoratto AM, Jani JP, Angeles TS, Maroney AC, Sanders CY, Murakata C, Neff NT, Vaught JL, Isaacs JT, Dionne CA (1997) CEP-751 inhibits TRK receptor tyrosine kinase activity in vitro exhibits anti-tumor activity. Int J Cancer 72:673–679

  10. Campochiaro PA, C99-PKC412-003 Study Group (2004) Reduction of diabetic macular edema by oral administration of the kinase inhibitor PKC412. Invest Ophthalmol Vis Sci 45:922–931

  11. Chater KF, Wilde LC (1980) Streptomyces albus G mutants defective in the SalGI restriction-modification system. J Gen Microbiol 116:323–334

  12. Degtyarenko KN, Archakov AI (1993) Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett 332:1–8

  13. Denny WA (2004) Edotecarin. IDrugs 7:173–177

  14. Gribble GW, Berthel SJ (2001) A survey of indolo[2,3-a]carbazoles and related natural products. In: Rahman AU (ed) Studies in natural products chemistry, vol. 12. Elsevier, Amsterdam, pp 365–409

  15. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf HS (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich, United Kingdom

  16. Howard-Jones AR, Walsh CT (2005) Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry 44:15652–15663

  17. Hyun CG, Bililign T, Liao J, Thorson JS (2003) The biosynthesis of indolocarbazoles in a heterologous Escherichia coli host. ChemBioChem 4:114–117

  18. Kaneko M, Saito Y, Saito H, Matsumoto T, Matsuda Y, Vaught JL, Dionne CA, Angeles TS, Glicksman MA, Neff NT, Rotella DP, Kauer JC, Mallamo JP, Hudkins RL, Murakata C (1997) Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives. J Med Chem 40:1863–1869

  19. Kase H, Iwahashi K, Matsuda Y (1986) K-252a, a potent inhibitor of protein kinase C from microbial origin. J Antibiot 39:1059–1065

  20. Levitzki A (1992) Tyrphostins: tyrosine kinase blockers as novel antiproliferative agents and dissectors of signal transduction. FASEB J 6:3275–3282

  21. Lombo F, Brana AF, Salas JA, Mendez C (2004) Genetic organization of the biosynthetic gene cluster for antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. ChemBioChem 5:1181–1187

  22. Meksuriyen D, Cordell GA (1988) Biosynthesis of staurosporine, 2. Incorporation of tryptophan. J Nat Prod 51:893–899

  23. Mucke HA (2003) CEP-1347 (Cephalon). IDrugs 6:377–383

  24. Nakanishi S, Matsuda Y, Iwahashi K, Kase H (1986) K-252b, c and d, potent inhibitors of protein kinase C from microbial origin. J Antibiot 39:1066–1071

  25. Nishizawa T, Aldrich CC, Sherman DH (2005) Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J Bacteriol 187:2084–2092

  26. Nishizawa T, Gruschow S, Jayamaha DE, Nishizawa-Harada C, Sherman DH (2006) Enzymatic assembly of the bis-indole core of rebeccamycin. J Am Chem Soc 128:724–725

  27. Onaka H, Taniguchi S, Igarashi Y, Furumai T (2002a) Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and Its heterologous expression in S. lividans. J Antibiot 55:1063–1071

  28. Onaka H, Taniguchi S, Igarashi Y, Furumai T (2002b) Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci Biotechnol Biochem 67:127–138

  29. Onaka H, Asamizu S, Igarashi Y, Yoshida R, Furumai T (2005) Cytochrome P450 homolog is responsible for C-N bond formation between aglycone and deoxysugar in the staurosporine biosynthesis of Streptomyces sp. TP-A0274. Biosci Biotechnol Biochem 69:1753–1759

  30. Pearce CJ, Doyle TW, Forenza S, Lam KS, Schroeder DR (1988) The biosynthetic origins of rebeccamycin. J Nat Prod 51:937–940

  31. Pissowotzki K, Mansouri K, Piepersberg W (1991) Genetics of streptomycin production in Streptomyces griseus: molecular structure and putative function of genes strELMB2N. Mol Gen Genet 231:113–123

  32. Prudhomme M (2003) Rebeccamycin analogues as anti-cancer agents. Eur J Med Chem 38:123–140

  33. Salas AP, Zhu L, Sanchez C, Brana AF, Rohr J, Mendez C, Salas JA (2005) Deciphering the late steps in the biosynthesis of the anti-tumor indolocarbazole staurosporine: sugar donor substrate flexibility of the StaG glycosyltransferase. Mol Microbiol 58:17–27

  34. Sambrook J, Maniatis T (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  35. Sanchez C, Butovich LA, Brana AF, Rohr J, Mendez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

  36. Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B, Deng Z (2003) A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin. Chem Biol 10:431–441

  37. Tapley P, Lamballe F, Barbacid M (1992) K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene 7:371–381

  38. Waldron C, Matsushima P, Rosteck PR Jr, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8:487–499

  39. Weitnaur G, Mühlenweg A, Trefzer A, Hoffmeister D, Süßmuth RD, Jung G, Welzel K, Vente A, Girreser U, Bechthold A (2001) Biosynthesis of the orthosomycin antibiotic avilamycinA: deductions from the molecular analysis of the avi biosynthetic gene cluster of Streptomyces viridochromogenes Tü57 and production of new antibiotics. Chem Biol 8:569–581

  40. Yasuzawa T, Iida T, Yoshida M, Hirayama N, Takahashi M, Shirahata K, Sano H (1986) The structures of the novel protein kinase C inhibitors K-252a, b, c and d. J Antibiot 39:1072–1078

Download references


This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD; KRF-2006-311-F00005) and partially supported by the KRF-2004-005-F00055. The authors also thank the Ministry of Education for the support through the Brain Korea 21 Project.

Author information

Correspondence to Ki-Bong Oh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S., Park, J., Chae, C. et al. Genetic organization of the biosynthetic gene cluster for the indolocarbazole K-252a in Nonomuraea longicatena JCM 11136. Appl Microbiol Biotechnol 75, 1119–1126 (2007).

Download citation


  • Nonomuraea longicatena
  • Indolocarbazole
  • K-252a
  • Biosynthesis
  • Gene cluster
  • Heterologous expression