Applied Microbiology and Biotechnology

, Volume 75, Issue 1, pp 195–203 | Cite as

Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea

  • Krista M. Kaster
  • Alexander Grigoriyan
  • Gary Jennneman
  • Gerrit VoordouwEmail author
Environmental Biotechnology


Thermophilic sulfate-reducing bacteria (tSRB) can be major contributors to the production of H2S (souring) in oil reservoirs. Two tSRB enrichments from a North Sea oil field, NS-tSRB1 and NS-tSRB2, were obtained at 58°C with acetate-propionate-butyrate and with lactate as the electron donor, respectively. Analysis by rDNA sequencing indicated the presence of Thermodesulforhabdus norvegicus in NS-tSRB1 and of Archaeoglobus fulgidus in NS-tSRB2. Nitrate (10 mM) had no effect on H2S production by mid-log phase cultures of NS-tSRB1 and NS-tSRB2, whereas nitrite (0.25 mM or higher) inhibited sulfate reduction. NS-tSRB1 did not recover from inhibition, whereas sulfate reduction activity of NS-tSRB2 recovered after 500 h. Nitrite was also effective in souring inhibition and H2S removal in upflow bioreactors, whereas nitrate was similarly ineffective. Hence, nitrite may be preferable for souring prevention in some high-temperature oil fields because it reacts directly with sulfide and provides long-lasting inhibition of sulfate reduction.


Thermophilic Sulfate-reducing bacteria Hydrogen sulfide Souring Nitrate Nitrite Nitrate-reducing bacteria 



This research was funded by Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Grant STPGP 234833-00 entitled “Sulfide removal with nitrate-reducing, sulfide-oxidizing bacteria” and by ConocoPhillips. The technical assistance of Robert H. Webb (ConocoPhillips) with construction and analyses of the chalk bioreactors is gratefully acknowledged.


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. APHA (American Public Health Association) (1992) Standard methods for the examination of wastewater. American Water Works Association and Water Pollution Control Federation, Washington, DC, pp. 439–440Google Scholar
  3. Beeder J, Nilsen RK, Torsvik T, Lein T (1994) Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl Environ Microbiol 60:1227–1231CrossRefGoogle Scholar
  4. Beeder J, Torsvik T, Lein T (1995) Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate reducing bacterium from oil field water. Arch Microbiol 164:331–336CrossRefGoogle Scholar
  5. Cord-Ruwisch R (1985) A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36CrossRefGoogle Scholar
  6. Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Pet Technol 1:97–106CrossRefGoogle Scholar
  7. Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotech 29:354–360CrossRefGoogle Scholar
  8. Gevertz D, Telang A, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria. Appl Environ Microbiol 66:2491–2501CrossRefGoogle Scholar
  9. Greene EA, Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Nitrite reductase of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing sulfide-oxidizing bacteria. Environ Microbiol 5:607–617CrossRefGoogle Scholar
  10. Hach Company (1995) DR/2000 Spectrophotometer procedures manual, 10th ednGoogle Scholar
  11. Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. (2004) Physiological and gene expression analysis of inhibition of Desulfovibrio vulgaris Hildenborough by nitrite. J Bacteriol 186:7944–7950CrossRefGoogle Scholar
  12. Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow bioreactors with nitrate and nitrite. Biotechnol Prog 19:338–345CrossRefGoogle Scholar
  13. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244–1245CrossRefGoogle Scholar
  14. Larsen J, Rod MH, Zwolle S (2004) Prevention of reservoir souring in the Halfdan field by nitrate injection. Corrosion 2004, paper 04761 (Houston TX: NACE International, 2004)Google Scholar
  15. Min H, Zinder SH (1990) Isolation and characterization of a thermophilic sulfate-reducing bacterium Desulfotomaculum thermacetoxidans sp. nov. Arch Microbiol 153:399–404CrossRefGoogle Scholar
  16. Nemati MJ, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434CrossRefGoogle Scholar
  17. Pereira AC, LeGall J, Xavier A, Teixeira M (2000) Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibro vulgaris Hildenborough. Biochim Biophys Acta 1481:67–82CrossRefGoogle Scholar
  18. Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BKC (1995) Desulfacinum infernum gen. nov., sp. nov., a novel, thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 47:85–89CrossRefGoogle Scholar
  19. Reinsel MA, Sears JT, Steward PS, McInerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Ind Microbiol 17:128–136CrossRefGoogle Scholar
  20. Stetter KO (1988) Archaeoglobus fuldigus gen. nov., sp. nov.: a new taxon of extremely thermophilic archeobacteria. Syst Appl Microbiol 10:172–173CrossRefGoogle Scholar
  21. Telang AJ, Ebert S, Foght JM, Westlake DWS, Voordouw G (1998) Effects of two diamine biocides on the microbial community from an oil field. Can J Microbiol 44:1060–1065CrossRefGoogle Scholar
  22. Telang AJ, Ebert S, Foght J, Westlake DWS, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793CrossRefGoogle Scholar
  23. Thorstenson T, Bødtker G, Sunde E, Beeder J (2002) Biocide replacement by nitrate in sea water injection in sea water injection systems. Corrosion 2002, paper 02033 (Houston TX: NACE International, 2002)Google Scholar
  24. Thompson JD, Gibson TJ, Plewinak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  25. Watanabe K, Kodama Y, Harayama S (2001) Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods 44:253–262CrossRefGoogle Scholar
  26. Watanabe K, Kodama Y, Kaku N (2002) Diversity and abundance of bacteria in an underground oil-storage cavity. BMC Microbiol 2(23):1–10Google Scholar
  27. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkins M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin Heidelberg New York pp 3352–3378CrossRefGoogle Scholar
  28. Wolfe B, Lui SM, Cowan J (1994) Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough). Purification, characterization, kinetics and EPR studies. Eur J Biochem 233:79–89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Krista M. Kaster
    • 1
  • Alexander Grigoriyan
    • 2
  • Gary Jennneman
    • 3
  • Gerrit Voordouw
    • 2
    Email author
  1. 1.International Research Institute of Stavanger (IRIS), AkvamiljøRandabergNorway
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada
  3. 3.ConocoPhillipsBartlesvilleUSA

Personalised recommendations