Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175


The expression of genes possibly involved in l-methionine and lactate catabolic pathways were performed in Brevibacterium linens (ATCC9175) in the presence or absence of added l-methionine. The expression of 27 genes of 39 selected genes differed significantly in l-methionine-enriched cultures. The expression of the gene encoding l-methionine γ-lyase (MGL) is high in l-methionine-enriched cultures and is accompanied by a dramatic increase in volatile sulfur compounds (VSC) biosynthesis. Several genes encoding α-ketoacid dehydrogenase and one gene encoding an acetolactate synthase were also up-regulated by l-methionine, and are probably involved in the catabolism of α-ketobutyrate, the primary degradation product of l-methionine to methanethiol. Gene expression profiles together with biochemical data were used to propose catabolic pathways for l-methionine in B. linens and their possible regulation by l-methionine.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

  2. Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P (2004) Identification and functional analysis of the gene encoding methionine-γ-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

  3. Arfi K, Landaud S, Bonnarme P (2006) Evidence for distinct l-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Appl Environ Microbiol 72:2155–2162

  4. Auger S, Danchin A, Martin-Verstraete I (2002) Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol 184:5179–5186

  5. Auger S, Gomez MP, Danchin A, Martin-Verstraete I (2005) The PatB protein of Bacillus subtilis is a C-S-lyase. Biochimie 87:231–238

  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300

  7. Bisswanger H (1981) Substrate specificity of the pyruvate dehydrogenase complex from Escherichia coli. J Biol Chem 256:815–822

  8. Bonnarme P, Amarita F, Chambellon E, Semon E, Spinnler HE, Yvon M (2004) Methylthioacetaldehyde, a possible intermediate metabolite for the production of volatile sulphur compounds from l-methionine by Lactococcus lactis. FEMS Microbiol Lett 236:85–90

  9. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilising the principle of protein–dye binding. Anal Biochem 72: 54–63

  10. Clausen T, Huber R, Prade L, Wahl MC, Meserschmidt A (1998) Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5A resolution. EMBO J 17:6827–6838

  11. Dias B, Weimer B (1998) Purification and characterization of l-methionine-γ-lyase from Brevibacterium linens BL2. Appl Environ Microbiol 64:3327–3331

  12. Didier G, Brezellec P, Rémy E, Hénaut A (2002) GeneANOVA—gene expression analysis of variance. Bioinformatics 18: 490–491

  13. Ferchichi M (1984) Production de méthanethiol à partir de l-méthionine par Brevibacterium linens CNRZ 918: induction, caractérisation, nature des systèmes enzymatiques. Ph.D. Dissertation, Universities of Paris VII, Paris XI and ENSIA, Paris, France

  14. Ferchichi M, Hemme D, Nardi M (1986) Induction of methanethiol production by Brevibacterium linens CNRZ 918. J Gen Microbiol 132: 3075–3082

  15. Inoue H, Inagaki K, Eriguchi S, Tamura T, Esaki N, Soda K, Tanaka H (1997) Molecular characterization of the mde operon involved in l-methionine catabolism of Pseudomonas putida. J Bacteriol 179:3956–3962

  16. Labeyrie F, Baudras A, Lederer F (1978) Flavocytochrome b 2 or l-lactate cytochrome c reductase from yeast. Methods Enzymol 5:238–256

  17. Leclercq-Perlat MN, Oumer A, Bergère JL, Spinnler HE, Corrieu G (2000) Behavior of Brevibacterium linens and Debaryomyces hansenii as ripening flora in controlled production of smear soft cheese from reconstituted milk: growth and substrate consumption. J Dairy Sci 83: 1665–1673

  18. Lee HS, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62: 459–467

  19. Maoz A, Mayr R, Sherer S (2003) Temporal stability and biodervisity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69: 4012–4018

  20. Martin N, Berger C, LeDu C, Spinnler HE (2001) Aroma compound production in cheese curd by coculturing with selected yeast and bacteria. J Dairy Sci 84:2125–2135

  21. McSweeney PLH (2004) Biochemistry of cheese ripening. Int J Dairy Technol 57:127–144

  22. Mounier J, Gelsomino R, Goerges S, Vancanneyt M, Vandemeulebroeke K, Hoste B, Sherer S, Swings J, Fitzgerald GF, Cogan TM (2006) Surface microflora of four smear-ripened cheeses. Appl Environ Microbiol 71: 6489–6500

  23. Ono B, Tanaka K, Naito K, Heike C, Shinoda S, Yamamoto S, Ohmori S, Oshima T, Toh-e A (1992) Cloning and characterization of the CYS3 (CYI1) gene of Saccharomyces cerevisiae. J Bacteriol 174:3339–3347

  24. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

  25. Rattray FP, Fox A (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. Int Dairy J 82:891–909

  26. Reiner A, Yekutieli D, Benjamini Y (2003) Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368–375

  27. Reymond N, Charles H, Duret L, Calevro F, Beslon G, Fayard JM (2004) ROSO: optimizing oligonucleotide probes for microarrays. Bioinformatics 20:271–273

  28. Rijnen L, Yvon M, van Kranenburg R, Courtin P, Verheul A, Chambellon E, Smit G (2003) AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese. Int Dairy J 13:805–812

  29. Seiflein TA, Lawrence JG (2001) Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346

  30. Weimer B, Seefeldt K, Dias B (1999) Sulfur metabolism in bacteria associated with cheese. Antonie van Leeuwenhock 76:247–261

Download references


The sequence data of B. linens BL2 were produced by the US department of Energy Joint Genome Institute. Orianne Cholet is grateful to Ecole Doctorale ABIES for a Ph.D. scholarship. Jérôme Delettre is acknowledged for LDH activity measurements.

Author information

Correspondence to Pascal Bonnarme.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cholet, O., Hénaut, A. & Bonnarme, P. Transcriptional analysis of L-methionine catabolism in Brevibacterium linens ATCC9175. Appl Microbiol Biotechnol 74, 1320–1332 (2007).

Download citation


  • Gene expression
  • Microarray
  • l-methionine
  • Brevibacterium linens