Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry

  • 713 Accesses

  • 90 Citations

Abstract

We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85°C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75°C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60°C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75°C was not detected, at least for 24 days. At both 60 and 75°C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75°C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Atif AAY, Fakhru’l-Razi A, Ngan MA, Morimoto M, Iyuke SE, Veziroglu NT (2005) Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. Int J Hydrogen Energy 30:1393–1397

  2. Audiffrin C, Cayol JL, Joulian C, Casalot L, Thomas P, Garcia JL, Ollivier B (2003) Desulfonauticus submarinus gen. nov., sp nov., a novel sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1585–1590

  3. Chamkha M, Patel BKC, Garcia JL, Labat M (2001) Isolation of Clostridium bifermentans from oil mill wastewaters converting cinnamic 3-phenylpropionic acid and emendation of the species. Anaerobe 7:189–197

  4. Chen CC, Lin CY, Lin MC (2002) Acid–base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228

  5. Fardeau ML, Magot M, Patel BK, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149

  6. Fardeau ML, Bonilla Salinas M, L’Haridon S, Jeanthon C, Verhe F, Cayol JL, Patel BK, Garcia JL, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474

  7. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

  8. Han SK, Shin HS (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manage Assoc 54:242–249

  9. Han SK, Kim SH, Kim HW, Shin HS (2005) Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Sci Technol 52:131–138

  10. Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27:1339–1347

  11. Heyndrickx M, Devos P, Speybrouck A, Deley J (1989) Fermentation of mannitol by Clostridium butyricum: role of acetate as an external hydrogen acceptor. Appl Microbiol Biotechnol 31:323–328

  12. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

  13. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2005) Continuous fermentative hydrogen production from sucrose and sugarbeet. Int J Hydrogen Energy 30:471–483

  14. Hyun HH, Zeikus JG, Longin R, Millet J, Ryter A (1983) Ultrastructure and extreme heat resistance of spores from thermophilic Clostridium species. J Bacteriol 156:1332–1337

  15. Jung G, Ferard G (1978) Enzyme-coupled measurement of ethanol in whole-blood and plasma with a centrifugal analyzer. Clin Chem 24:873–876

  16. Karube I, Matsunaga T, Tsuru S, Suzuki S (1976) Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochim Biophys Acta 444:338–343

  17. Kim BC, Grote R, Lee DW, Antranikian G, Pyun YR (2001) Thermoanaerobacter yonseiensis sp. nov., a novel extremely thermophilic, xylose-utilizing bacterium that grows at up to 85 degrees C. Int J Syst Evol Microbiol 51:1539–1548

  18. Kotsopoulos TA, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C). Biotechnol Bioeng 94:296–302

  19. Kraemer JT, Bagley DM (2005) Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ Sci Technol 39:3819–3825

  20. Lamed RJ, Lobos JH, Su TM (1988) Effects of Stirring and Hydrogen on Fermentation Products of Clostridium thermocellum. Appl Environ Microbiol 54:1216–1221

  21. Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

  22. Lay JJ, Tsai CJ, Huang CC, Chang JJ, Chou CH, Fan KS, Chang JI, Hsu PC (2005) Influences of pH and hydraulic retention time on anaerobes converting beer processing wastes into hydrogen. Water Sci Technol 52:123–129

  23. Lin CY, Chang RC (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J Chem Technol Biotechnol 74:498–500

  24. Liu H, Fang HHP (2003) Hydrogen production from wastewater by acidogenic granular sludge. Water Sci Technol 47:153–158

  25. Madden RH (1983) Isolation and characterization of Clostridium stercorarium sp-nov, cellulolytic thermophile. Int J Syst Bacteriol 33:837–840

  26. Mizuno O, Ohara T, Shinya M, Noike T (2000) Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora. Water Sci Technol 42:345–350

  27. Mladenovska Z, Mathrani IM, Ahring BK (1995) Isolation and characterization of Caldicellulosiruptor lactoaceticus sp-nov, an extremely thermophilic, cellulolytic, anaerobic bacterium. Arch Microbiol 163:223–230

  28. Monmoto M, Atsuka M, Atif AAY, Ngan MA, Fakhru’l-Razi A, Iyuke SE, Bakir AM (2004) Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy 29:709–713

  29. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

  30. Nandi R, Sengupta S (1998) Microbial production of hydrogen: An overview. Crit Rev Microbiol 24:61–84

  31. Nielsen AT, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl LG, Lundstrom I, Svensson BH (2001) Hydrogen production from organic waste. Int J Hydrogen Energy 26:547–550

  32. Nishio N, Nakashimada Y (2004) High rate production of hydrogen/methane from various substrates and wastes. Adv Biochem Eng Biotechnol 90:63–87

  33. Noike T, Mizuno O (2000) Hydrogen fermentation of organic municipal wastes. Water Sci Technol 42:155–162

  34. Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32

  35. Ozutsumi Y, Hayashi H, Sakamoto M, Itabashi H, Benno Y (2005) Culture-independent analysis of fecal microbiota in cattle. Biosci Biotechnol Biochem 69:1793–1797

  36. Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 83:358–363

  37. Roychowdhury S, Cox D, Levandowsky M (1988) Production of hydrogen by microbial fermentation. Int J Hydrogen Energy 13:407–410

  38. Schroder C, Selig M, Schonheit P (1994) Glucose fermentation of acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden–Meyerh of pathway. Arch Microbiol 161:460–470

  39. Shin HS, Youn JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29:1355–1363

  40. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149

  41. Tajima K, Arai S, Ogata K, Nagamine T, Matsui H, Nakamura M, Aminov RI, Benno Y (2000) Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 6:273–284

  42. Takaku H, Kodaira S, Kimoto A, Nashimoto M, Takagi M (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J Biosci Bioeng 101:42–50

  43. Talabardon M, Schwitzguebel JP, Peringer P, Yang ST (2000) Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Prog 16:1008–1017

  44. Tang YQ, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

  45. Tanisho S, Suzuki Y, Wakao N (1987) Fermentative hydrogen evolution by Enterobacter aerogenes strain E. 82005. Int J Hydrogen Energy 12:623–627

  46. Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79:395–397

  47. Ueno Y, Otsuka S, Morimoto M (1996) Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J Ferment Bioeng 82:194–197

  48. Ueno Y, Haruta S, Ishii M, Igarashi Y (2001a) Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl Microbiol Biotechnol 57:65–73

  49. Ueno Y, Haruta S, Ishii M, Igarashi Y (2001b) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555–562

  50. Valdez-Vazquez I, Sparling R, Risbey D, Rinderknecht-Seijas N, Poggi-Varaldo HM (2005) Hydrogen generation via anaerobic fermentation of paper mill wastes. Bioresour Technol 96:1907–1913

  51. Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV (2003) Sequential production of hydrogen and methane from wastewater sludge using anaerobic fermentation. J Chin Inst Chem Eng 34:683–687

  52. Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China. Int J Syst Evol Microbiol 51:1335–1341

  53. Yokoi H, Maki R, Hirose J, Hayashi S (2002) Microbial production of hydrogen from starch-manufacturing wastes. Biomass Bioenergy 22:389–395

  54. Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91:58–63

  55. Yu HQ, Zhu ZH, Hu WR, Zhang HS (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359–1365

Download references

Acknowledgements

We are grateful to K. Tajima, Functional Feed Research Team, NILGS, for his critical reading of the manuscript. We also thank H. Kajikawa, K. Sumiya, and the members of the Ruminants and Field Management Section, NILGS, for their helpful assistance and discussions. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Sports, Culture, Science, and Technology, Japan.

Author information

Correspondence to Hiroshi Yokoyama.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yokoyama, H., Waki, M., Moriya, N. et al. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Appl Microbiol Biotechnol 74, 474–483 (2007). https://doi.org/10.1007/s00253-006-0647-4

Download citation

Keywords

  • Hydrogen production
  • Cow waste
  • Anaerobic microflora
  • Thermophilic condition