Advertisement

Applied Microbiology and Biotechnology

, Volume 73, Issue 5, pp 1059–1064 | Cite as

Immobilization of bacteria in silica matrices using citric acid in the sol–gel process

  • Gisela S. Alvarez
  • Martín F. Desimone
  • Luis E. DiazEmail author
Biotechnological Products and Process Engineering

Abstract

The aim of this work was to use citric acid in the sol–gel process to generate an inorganic polymer that allows bacterial survival for long periods of time and to study the influence of different storage temperatures. We compared gram-negative Escherichia coli and gram-positive Staphylococcus aureus, immobilized and preserved at different storage temperatures in silica matrices prepared by the method proposed. Immobilized E. coli and S. aureus in silica matrices were stored in sealed tubes at 20, 4, −20, and −70°C for 4 months during which the number of viable cells was analyzed. Results show that the immobilization in silica matrices using citric acid, to neutralize the alkalinity of the silica precursors, makes the technique not only biocompatible but also easier to perform since polymerization does not occur immediately as it does when hydrochloric acid is utilized.

Keywords

Citric acid Escherichia coli Immobilization Preservation Sol–gel Staphylococcus aureus 

Notes

Acknowledgements

G.S.A. is grateful for her doctoral fellowship granted by the Agencia Nacional de Investigaciones Científicas y Técnicas. M.F.D. is grateful for his post-doctoral fellowship granted by the CONICET. The authors would like to acknowledge the support of grants from the Universidad de Buenos Aires (UBACYT B055 and B817); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET PIP 02493) and Agencia Nacional de Investigaciones Científicas y Técnicas (BID 1728/OC-AR PICT 14192). L.E.D. is a member of the CONICET Research Counsil. We also wish to thank Professor Rex Davis for language corrections.

References

  1. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  2. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2000) Aqueous sol-gel process for proteins encapsulation. Chem Mater 12(8):2434–2441CrossRefGoogle Scholar
  3. Bjerketorp J, Håkansson S, Belkin S, Jansson JK (2006) Advances in preservation methods: keeping biosensor microorganism alive and active. Curr Opin Biotechnol 17:43–49CrossRefGoogle Scholar
  4. Boninsegna S, Bosetti P, Carturan G, Dellagiacoma G, Dal Monte R, Rossi M (2003) Encapsulation of individual pancreatic islets by solgel SiO2: a novel procedure for perspective cellular grafts. J Biotechnol 100:277–286CrossRefGoogle Scholar
  5. Branyic T, Kuncova G, Paca J, Demmerova K (1998) Encapsulation of microbial cells into silica gel. J Sol-Gel Sci Technol 13:283–287CrossRefGoogle Scholar
  6. Braun S, Rappoport S, Zusman R, Avnir D, Ottolenghi M (1990) Biochemically active sol-gel glasses: the trapping of enzymes. Mater Lett 10:1–5CrossRefGoogle Scholar
  7. Brinker CJ, Scherer GW (1990) Sol-Gel Science. The physics and chemistry of sol–gel processing. Academic, San Diego, CAGoogle Scholar
  8. Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) Encapsulation of functional cells by sol–gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14:2087–2098CrossRefGoogle Scholar
  9. Coiffier A, Coradin T, Roux C, Bouvet O, Livage J (2001) Sol–gel encapsulation of bacteria: a comparison between alkoxide and aqueous routes. J Mater Chem 11(8):2039–2044CrossRefGoogle Scholar
  10. Conroy JFT, Power ME, Martin J, Earp B, Hosticka B, Daitch CE, Norris PM (2000) Cells in sol-gels I: a cytocompatible route for the production of macroporous silica gels. J Sol-Gel Sci Technol 18:268–283CrossRefGoogle Scholar
  11. Desimone MF, De Marzi MC, Copello GJ, Fernández MM, Malchiodi EL, Diaz LE (2005) Efficient preservation in a silicon oxide matrix of Escherichia coli, producer of recombinant proteins. Appl Microbiol Biotechnol 68:747–752CrossRefGoogle Scholar
  12. Desimone MF, De Marzi MC, Copello GJ, Fernández MM, Pieckenstain FL, Malchiodi EL, Diaz LE (2006) Production of recombinant proteins by sol-gel immobilized Escherichia coli. Enzyme Microb Technol (in press). DOI  https://doi.org/10.1016/j.enzmictec.2005.11.052 CrossRefGoogle Scholar
  13. Fennouh S, Guyon S, Livage J, Roux C (2000) Sol–gel entrapment of Escherichia coli. J Sol-Gel Sci Technol 19:647–649CrossRefGoogle Scholar
  14. Ferrer ML, Levy D, Gomez-Lor B, Iglesias M (2004) High operational stability in peroxidase-catalyzed non-aqueous sulfoxidations by encapsulation within sol–gel glasses. J Mol Catal B Enzym 27:107–111CrossRefGoogle Scholar
  15. Guzman NA, Phillips TM (2005) Immunoaffinity CE for proteomics studies. Anal Chem 1:61A–67AGoogle Scholar
  16. Harms H, Wells MC, Roelof J, van der Meer JR (2006) Whole-cell living biosensors-are they ready for environmental application? Appl Microbiol Biotechnol 70:273–280CrossRefGoogle Scholar
  17. Iller RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  18. Lawrence CL, Botting CH, Antrobus R, Coote PJ (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol 24:3307–3323CrossRefGoogle Scholar
  19. Liang RP, Qiu HD, Cai PX (2005) A novel amperometric immunosensor based on three-dimensional sol–gel network and nanoparticle self-assemble technique. Anal Chim Acta 534:223–229CrossRefGoogle Scholar
  20. Naskar MK (2005) Effects of organic acids on sol-gel transition of silicic acid—a rheological study. J Mater Sci 40:1011–1309CrossRefGoogle Scholar
  21. Nassif N, Bouvet O, Rager MN, Roux C, Coradin T, Livage J (2002) Living bacteria in silica gels. Nat Matters 1:42–44CrossRefGoogle Scholar
  22. Nassif N, Roux C, Coradin T, Rager MN, Bouvet OMM, Livage J (2003) A sol-gel matrix to preserve the viability of encapsulated bacteria. J Mater Chem 13:1–7CrossRefGoogle Scholar
  23. Park KS, Baumstark-Khan C, Rettberg P, Horneck G, Rabbow E, Gu MB (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors. Radiat Environ Biophys 44:69–71CrossRefGoogle Scholar
  24. Pope EJA, Braun K, Peterson CM (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Technol 8:635–639Google Scholar
  25. Premkumar JR, Lev O, Rosen R, Belkin S (2001) Encapsulation of luminous recombinant E. coli in sol-gel silicate films. Adv Mater 13:1773–1775CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Gisela S. Alvarez
    • 1
  • Martín F. Desimone
    • 1
  • Luis E. Diaz
    • 1
    Email author
  1. 1.Cátedra de Química Analítica Instrumental, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations