Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycosyltransferase genes

Abstract

Glycosylation pattern in cosmomycins is a distinctive feature among anthracyclines. These antitumor compounds possess two trisaccharide chains attached at C-7 and C-10, each of them with structural variability, mainly at the distal deoxysugar moieties. We have characterized a 14-kb chromosomal region from Streptomyces olindensis containing 13 genes involved in cosmomycin biosynthesis. Two of the genes, cosG and cosK, coding for glycosyltransferase were inactivated with the generation of five new derivatives. Structural elucidation of these compounds showed altered glycosylation patterns indicating the capability of both glycosyltransferases of transferring deoxysugars to both sides of the aglycone and the flexibility of CosK with respect to the deoxysugar donor. A model is proposed for the glycosylation steps during cosmomycins biosynthesis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Arcamone F, Cassinelli G (1998) Biosynthetic anthracyclines. Curr Med Chem 5:391–419

  2. Bao W, Sheldon PJ, Hutchinson CR (1999) Purification and properties of the Streptomyces peucetius DpsC beta-ketoacyl:acyl carrier protein synthase III that specifies the propionate-starter unit for type II polyketide biosynthesis. Biochemistry 38:9752–9757

  3. Bieber LW, Da Silva Filho AA, Silva EC, Mello JF, Lyra FDA (1989) The Anthracyclinic Complex Retamycin:1. Structure determination of the major constituents. J Nat Prod 52:385–388

  4. Binaschi M, Bigioni M, Cipollone A, Rossi C, Goso C, Maggi CA, Capranico G, Animati F (2001) Anthracyclines: selected new developments. Curr Med Chem Anti-Canc Agents 1:113–130

  5. Bonfante V, Bonadonna G, Villani F, Martini A. (1980) Preliminary clinical experience with 4-epidoxorubicin in advanced human neoplasia. Recent results. Cancer Res 74:192–199

  6. Borisova SA, Zhao L, Melancon III CE, Kao CL, Liu HW (2004) Characterization of the glycosyltransferase activity of desVII: analysis of and implications for the biosynthesis of macrolide antibiotics. J Am Chem Soc 126:6534–6535

  7. Brockmann H, Waehneldt T, Niemeyer J (1969) Konstitution und Konfiguration von β-Rhodomycin II und β-iso-Rhodomycin II. Tetrahedron Lett 10:415–419

  8. Chen S, Roberts JB, Xue Y, Sherman DH, Reynolds KA (2001) The Streptomyces venezuelae pikAV gene contains a transcription unit essential for expression of enzymes involved in glycosylation of narbonolide and 10-deoxymethynolide. Gene 263:255–264

  9. Chung JY, Fujii I, Harada S, Sankawa U, Ebizuka Y (2002) Expression, purification, and characterization of AknX anthrone oxygenase, which is involved in aklavinone biosynthesis in Streptomyces galilaeus. J Bacteriol 184:6115–6122

  10. Cipollone A, Berettoni M, Bigioni M, Binaschi M, Cermele C, Monteagudo E, Olivieri L, Palomba D, Animati F, Goso C, Maggi CA (2002) Novel anthracycline oligosaccharides: influence of chemical modifications of the carbohydrate moiety on biological activity. Bioorg Med Chem 10:1459–1470

  11. Fernández E, Weissbach U, Reillo CS, Braña AF, Méndez C, Rohr J, Salas JA (1998) Identification of two genes from Streptomyces argillaceus encoding glycosyltransferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937

  12. Flett F, Mersinias V, Smith CP (1997) High efficiency integeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

  13. Furlan RLA, Garrido LM, Brumatti G, Amarante-Mendes GP, Martins RA, Facciotti MCR, Padilla G (2002) A rapid and sensitive method for the screening of DNA intercalating antibiotics. Biotechnol Lett 24:1807–1813

  14. Furlan RLA, Watt SJ, Garrido LM, Amarante-Mendes GP, Nur-e-Alam M, Rohr J, Braña A, Mendez C, Salas JA, Sheil MM, Beck JL, Padilla G (2004) DNA-Binding properties of Cosmomycin D, an anthracycline with two trisaccharide chains. J Antibiot 57:647–654

  15. Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

  16. Gonçalves de Lima O, Lyra FDA, Albuquerque MMF, Maciel GM, Coelho JSB (1969) Primeiras observações sobre o complexo antibiótico e antitumoral -retamicina- produzido por Streptomyces olindensis nov. sp. IAUPe. Rev Inst Antibiot 9:27–38

  17. Hortobagyi GN (1997) Anthracyclines in the treatment of cancer. An overview. Drugs 54(Suppl 4):1–7

  18. Ihn W, Schlegel B, Fleck W, Gutsche W, Hultsch E (1982) Verfahren zur Herstellung eines Anthracyclin-Antibiotikums sowie seines Aglykons. Patent of the German Democratic Republic 205 696—WP C12P/241 039 8, June 24, 1982

  19. Ihn W, Schlegel B, Fleck W, Tresselt D, Gutsche W, Koch W (1985) Verfahren zur Herstellung von Beta-Rhodomycin II sowie seines Aglykons. Patent of the German Democratic Republic 220 046 A1—WP C12P/255 894 5, March 20, 1985

  20. Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 172:251–253

  21. Johdo O, Ishikura T, Yoshimoto A, Takeuchi T (1991a) Anthracycline metabolites from Streptomyces violaceus A262. I. Isolation of antibiotic-blocked mutants from Streptomyces violaceus A262. J Antibiot (Tokyo) 44:1110–1120

  22. Johdo O, Watanabe Y, Ishikura T, Yoshimoto A, Nagawa H, Sawa T, Takeuchi T (1991b) Anthracycline metabolites from Streptomyces violaceus A262. II. New anthracycline epelmycins produced by a blocked mutant strain SU2-730. J Antibiot (Tokyo) 44:1121–1129

  23. Johdo O, Watanabe Y, Ishikura T, Yoshimoto A, Nagawa H, Sawa T, Takeuchi T (1991c) Anthracycline metabolites from Streptomyces violaceus A262. III. New anthracycline obelmycins produced by a variant strain SE2-2385. J Antibiot (Tokyo) 44:1130–1140

  24. Johdo O, Tone H, Okamoto R, Yoshimoto A, Nagawa H., Sawa T, Takeuchi T (1991d) Anthracycline metabolites from Streptomyces violaceus A262. IV. New anthracycline yellamycins produced by a variant strain SC-7. J Antibiot (Tokyo) 44:1155–1159

  25. Johdo O, Tone H, Okamoto R, Yoshimoto A, Nagawa H., Sawa T, Takeuchi T (1991e) Anthracycline metabolites from Streptomyces violaceus A262. V. New anthracycline alldimycin A: a minor component isolated from obelmycin beer. J Antibiot (Tokyo) 44:1160–1164

  26. Johdo O, Yoshioka T, Takeuchi T, Yoshimoto A (1997) Isolation of New Anthracyclines 10-O-rhodosaminyl-β-rhodomycinone and β-isorhodomycinone from mild-acid treated culture of obelmycin-producing Streptomyces violaceus. J Antibiot (Tokyo) 50:522–525

  27. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich, UK

  28. Koch W, Ihn W, Fleck W, Zielke R, Gutsche W, Tresselt D, Strauss D (1982) Verfahren zur Herstellung von Alpharubicin I sowie seines Aglykons. Patent of the German Democratic Republic 211 809—WP C12P/2451 888, Nov. 24, 1982

  29. Lawlor EJ, Baylis HA, Chater KF (1987) Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 10:1305–1310

  30. Lombó F, Siems K, Braña AF, Méndez C, Bindseil K, Salas JA (1997) Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumor polyketide mithramycin. J Bacteriol 179:3354–3357

  31. Lomovskaya N, Otten SL, Doi-Katayama Y, Fonstein L, Liu X-C, Takatsu T, Inventi A, Filippi S, Torti F, Colombo AL, Hutchinson CR (1999) Doxorubicin overproduction in Streptomyces peucetius: cloning and characterization of the dnrU ketoreductase and dnrV genes and the doxA cytochrome P-450 hydroxylase gene. J Bacteriol 181:305–318

  32. Lu W, Leimkuhler C, Oberthur M, Kahne D, Walsh CT (2004) AknK is an l-2-deoxyfucosyltransferase in the biosynthesis of the anthracycline aclacinomycin A. Biochemistry 43:4548–4558

  33. Matsuzawa Y, Yoshimoto A, Oki T, Naganawa H, Takeuchi T, Umezawa H (1980) Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. II. Structure of new anthracycline antibiotics obtained by microbial glycosidation and biological activity. J Antibiot 33:1341–1347

  34. Metsa-Ketela M, Salo V, Halo L, Hautala A, Hakala J, Mantsala P, Ylihonko K (1999) An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiol Lett 180:1–6

  35. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185–229

  36. Miyamoto Y, Johdo O, Nagamatsu Y, Yoshimoto A (2002) Cloning and characterization of a glycosyltransferase gene involved in the biosynthesis of anthracycline antibiotic beta-rhodomycin from Streptomyces violaceus. FEMS Microbiol Lett 206:163–168

  37. Muller I, Niethammer D, Bruchelt G (1998) Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity. Int J Mol Med 2:491–494

  38. Nielsen D, Maare C, Skovsgaard T (1996) Cellular resistance to anthracyclines. Gen Pharmacol 27:251–255

  39. Oki T, Yoshimoto A, Matsuzawa Y, Takeuchi T, Umezawa H (1980) Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. I. Glycosidation of various anthracyclinones by an aclacinomycin-negative mutant and biosynthesis of aclacinomycins from aklavinone. J Antibiot 33:1331–1340

  40. Oki T, Yoshimoto A, Matsuzawa Y, Inui T, Takeuchi T, Umezawa H (1981) Rhodomycin group of antibiotics and process for preparing same. European Patent 0022 574 A1—C12P 19/56, July 11, 1980

  41. Otten SL, Liu X, Ferguson J, Hutchinson CR (1995) Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol 177:6688–6692

  42. Platel D, Pouna P, Boronon-Adele S, Robert J (1999) Comparative cardiotoxicity of idarubicin and doxorubicin using the isolated perfused rat heart-model. Anticancer Drugs 7:671–676

  43. Quigley GJ, Wang AH, Ughetto G, van der Marel G, van Boom JH, Rich A (1980) Molecular structure of an anticancer drug-DNA complex: daunomycin plus d(CpGpTpApCpG). Proc Natl Acad Sci USA 77:7204–7208

  44. Quirós LM, Aguirrezabalaga I, Olano C, Méndez C, Salas JA (1998) Two glycosyltransferases and a glycosidase are involved in oleandomycin modification during its biosynthesis by Streptomyces antibioticus. Mol Microbiol 28:1177–1185

  45. Rajgarhia VB, Priestley ND, Strohl WR (2001) The product of dpsC confers starter unit fidelity upon the daunorubicin polyketide synthase of Streptomyces sp. strain C5. Metab Eng 3:49–63

  46. Räty K, Kantola J, Hautala A, Hakala J, Ylihonko K, Mantsala P (2002) Cloning and characterization of Streptomyces galilaeus aclacinomycins polyketide synthase (PKS) cluster. Gene 293:115–122

  47. Redenbach M, Ikeda K, Yamasaki M, Kinashi H (1998) Cloning and physical mapping of the EcoRI fragments of the giant linear plasmid SCP1. J Bacteriol 180:2796–2799

  48. Rooverts DJ, Van Vliet M, Bloem AC, Lokhorst HM (1999) Idarubicin overcomes P-glycoprotein-related multidrug resistance: comparison with doxorubicin and daunorubicin in human multiple myeloma cell lines. Leuk Res 6:539–548

  49. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA

  50. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

  51. Strohl WR, Dickens ML, Rajgarhia VB, Woo AJ, Priestley NB (1997) Anthracyclines In: Strohl WR (ed) Biotechtology of antibiotics, 2nd. Marcel Dekker NY, pp 577–657

  52. Summers RG, Donadio S, Staver MJ, Wendt-Pienkowski E, Hutchinson CR, Katz L (1997) Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in l-mycarose and d-desosamine production. Microbiology 143:3251–3262

  53. Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z (2002) Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371

  54. Wang AH, Ughetto G, Quigley GJ, Rich A (1987) Interactions between an anthracycline antibiotic and DNA: molecular structure of daunomycin complexed to d(CpGpTpApCpG) at 1.2-A resolution. Biochemistry 26:1152–1163

  55. Xue Y, Zhao L, Liu HW, Sherman DH (1998) A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae: architecture of metabolic diversity. Proc Natl Acad Sci USA 95:12111–12116

  56. Yoshimoto A, Johdo O, Takatsuki Y, Ishikura T, Sawa T, Takeuchi T, Umezawa H (1984) New anthracycline antibiotics obtained by microbial glycosidation of β-isorhodomycinone and α2-rhodomycinone. J Antibiot 37:935–938

Download references

Acknowledgements

The authors thank specially collaborations of Drs. Arthur Gruber, Alda Madeira, Gilson P. Manfio, Valéria M. de Oliveira, and Hernando Del Portillo for the sequencing of the DNA, and the technical support of Dr. Fabiana Fantinatti-Garboggini, Dr. Emilio Fernando Merino, Karen Christina M. Simioni, and Daniele B. de Souza. This work was supported by grants from FAPESP to L.M.G. (00/07288-0) and to G.P. (03/00135-1), from the Spanish Ministry of Education and Science to L.M.G, R.L.A.F and C.M. (BMC2002-03599), and from the US National Institutes of Health (CA 091901 and CA 102102) to J.R. We thank Obra Social Cajastur for financial support to F.L.

Author information

Correspondence to Gabriel Padilla.

Electronic supplementary material

Below is the link to the supplementary material.

Supplement 1

1H NMR data of compounds 1-5; 400 MHz; δ in ppm relative to TMS, multiplicity (J in Hz)*

Supplement 2

3C-NMR Data (100.4 MHz)

Supplement 3

HPLC analysis of ethyl acetate extracts from cultures of S. olindensis ΔcosK (a) and of S. olindensis ΔcosG (b). Numbers indicate peaks corresponding to the isolated products

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garrido, L.M., Lombó, F., Baig, I. et al. Insights in the glycosylation steps during biosynthesis of the antitumor anthracycline cosmomycin: characterization of two glycosyltransferase genes. Appl Microbiol Biotechnol 73, 122–131 (2006). https://doi.org/10.1007/s00253-006-0453-z

Download citation

Keywords

  • High Performance Liquid Chromatography
  • cosB
  • Cosmid Library
  • Glycosyltransferase Gene
  • Preparative High Performance Liquid Chromatography