Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The role of PHB metabolism in the symbiosis of rhizobia with legumes

Abstract

The carbon storage polymer poly-β-hydroxybutyrate (PHB) is a potential biodegradable alternative to plastics, which plays a key role in the cellular metabolism of many bacterial species. Most species of rhizobia synthesize PHB but not all species accumulate it during symbiosis with legumes; the reason for this remains unclear, although it was recently shown that a metabolic mutant of a nonaccumulating species retains the capacity to store PHB in symbiosis. Although the precise roles of PHB metabolism in these bacteria during infection, nodulation, and nitrogen fixation are not determined, the elucidation of these roles will influence our understanding of the metabolic nature of the symbiotic relationship. This review explores the progress that was made in determining the biochemistry and genetics of PHB metabolism. This includes the elucidation of the PHB cycle, variations in PHB metabolism among rhizobial species, and the implications of these variations, while proposing a model for the role of PHB metabolism and storage in symbiosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aneja P, Charles TC (1999) Poly-3-hydroxybutyrate degradation in Rhizobium (Sinorhizobium) meliloti: isolation and characterization of a gene encoding 3-hydroxybutyrate dehydrogenase. J Bacteriol 181(3):849–857

  2. Aneja P, Dziak R, Cai G, Charles TC (2002) Identification of an acetoacetyl coenzyme A synthetase-dependent pathway for utilization of l-(+)-3-hydroxybutyrate in Sinorhizobium meliloti. J Bacteriol 184(6):1571–1577

  3. Aneja P, Dai M, Lacorre DA, Pillon B, Charles TC (2004) Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 239(1):277–283

  4. Bergersen FJ, Turner GL (1990) Bacteroids from soybean root nodules: accumulation of poly-3-hydroxybutyrate during supply of malate and succinate in relation to N2 fixation in flow-chamber reactions. Proc R Soc Lond B 240:39–59

  5. Bergersen FJ, Turner GL (1991) A role for poly-3-hydroxybutyrate in bacteroids of soybean root nodules. Proc R Soc Lond B 245:59–64

  6. Bolton E, Higgisson B, Harrington A, O’Gara F (1986) Dicarboxylate acid transport in Rhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes. Arch Microbiol 144(142–146)

  7. Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27(4/5):683–697

  8. Cai G, Driscoll BT, Charles TC (2000) Requirement for the enzymes acetoacetyl coenzyme A synthetase and poly-3-hydroxybutyrate (PHB) synthase for growth of Sinorhizobium meliloti on PHB cycle intermediates. J Bacteriol 182(8):2113–2118

  9. Catroux G, Hartmann A, Revellin C (2001) Trends in rhizobial inoculant production and use. Plant Soil 230(1):21–30

  10. Cevallos M, Encarnacion S, Leija A, Mora Y, Mora J (1996) Genetic and physiological characterization of a Rhizobium etli mutant strain unable to synthesize poly-beta-hydroxybutyrate. J Bacteriol 178(6):1646–1654

  11. Charles TC (2001) Sinorhizobium meliloti PHB cycle genetics. International congress on nitrogen fixation. CABI, Hamilton, ON

  12. Charles TC, Cai G, Aneja P (1997) Megaplasmid and chromosomal loci for the PHB degradation pathway on Rhizobium (Sinorhizobium) meliloti. Genetics 146:1211–1220

  13. Charles TC, Aneja P (1999) Methylmalonyl-CoA mutase encoding gene of Sinorhizobiummeliloti. Gene 226(1):121–127

  14. Chen F, Okabe Y, Osano K, Tajima S (1998) Purification and characterization of an NAD-malic enzyme from Bradyrhizobium japonicum A1017. Appl Environ Microbiol 64(10):4073–4075

  15. Copeland L, Quinnell RG, Day DA (1989) Malic enzyme activity in bacteroids from soybean nodules. J Gen Microbiol 135:2005–2011

  16. Craig AS, Williamson KL (1972) Three inclusions of rhizobial bacteroids and their cytochemical character. Arch Microbiol 87:165–171

  17. Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology—a review. Soil Biol Biochem 36(8):1275–1288

  18. Delafield FP, Doudoroff M, Palleroni NJ, Lusty CJ, Contopoulos R (1965) Decomposition of poly-3-Hydroxybutyrate by Pseudomonads. J Bacteriol 90(5):1455–1466

  19. Denison RF (2000). Legume sanctions and the evolution of symbiotic cooperation by rhizobia. Am Nat 156:567–576

  20. Denison RF, Kiers TE (2004) Why are most rhizobia beneficial to their plant hosts, rather than parasitic? Microbes Infect 6(13):1235–1239

  21. Dixon ROD (1967) The origin of the membrane envelope surrounding the bacteria and bacteroids and the presence of glycogen in clover root nodules. Arch Microbiol 56:156–166

  22. Driscoll BT, Finan TM (1993) NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol 7(6):865–873

  23. Driscoll B, Finan T (1997) Properties of NAD(+)- and NADP(+)-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti and differential expression of their genes in nitrogen-fixing bacteroids. Microbiol 143(2):489–498

  24. Dunn MF (1998) Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol Rev 22(2):105–123

  25. Dunn MF, Araiza G, Encarnacion S, del Carmen Vargas M, Mora J (2002) Effect of aniA (carbon flux regulator) and phaC (poly-3-hydroxybutyrate synthase) mutations on pyruvate metabolism in Rhizobium etli. J Bacteriol 184(8):2296–2299

  26. Encarnacion S, del CarmenVargas M, Dunn MF, Davalos A, Mendoza G, Mora Y, Mora J (2002) AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 184(8):2287–2295

  27. Finan TM, Wood JM, Jordan DC (1981) Succinate transport in Rhizobium leguminosarum. J Bacteriol 148(1):193–202

  28. Finan TM, Wood JM, Jordan DC (1983) Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J Bacteriol 154:1403–1413

  29. Gage DJ, Bobo T, Long SR (1996) Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J Bacteriol 178(24):7159–7166

  30. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernandez-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter F-J, Weidner S, Wells DH, Wong K, Yeh K-C, Batut J (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293(5530):668–672

  31. Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137(4):1228–1235

  32. Gerson T, Patel JJ, Wong MN (1978) The effects of age, darkness, and nitrate on poly-2-hydroxybutyrate levels and nitrogen-fixing ability of Rhizobium in Lupinus angustifoli. Physiol Plant 42:420–424

  33. Goodchild DJ, Bergersen FJ (1966) Electron microscopy of the infection and subsequent development of soybean nodule cells. J Bacteriol 92(1):204–213

  34. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877

  35. Gresshoff PM, Rolfe BG (1978) Viability of Rhizobium bacteroids isolated from soybean nodule protoplasts. Planta 142:329–333

  36. Hadri A, Spaink HP, Bisseling T, Brewin NJ (1998) Diversity of root nodulation and rhizobial infection processes. In: Spaink AKHP, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht

  37. Hahn ML, Meyer D, Studer B, Regensburger B, Hennecke H (1984) Insertion and deletion mutations within the nif region of Rhizobium japonicum. Plant Mol Biol 3:159–168

  38. Hirsch AM, Long SR, Bang M, Haskins N, Ausubel FM (1982) Structural studies of alfalfa roots infected with nodulation mutants of Rhizobium meliloti. J Bacteriol 151(1):411–419

  39. Hirsch AM, Bang M, Ausubel FM (1983) Ultrastructural analysis of ineffective alfalfa nodules formed by nif::Tn5 mutants of Rhizobium meliloti. J Bacteriol 155(1):367–380

  40. Hofmann K, Heinz EB, Charles TC, Hoppert M, Liebl W, Streit WR (2000) Sinorhizobium meliloti strain 1021 bioS and bdhA gene transcriptions are both affected by biotin available in defined medium. FEMS Microbiol Lett 182(1):41–44

  41. Howarth RW, Boyer EW, Pabich WJ, Galloway JN (2002) Nitrogen use in the United States from 1961–2000 and potential future trends. Ambio 31(2):88–96

  42. Jackson FA, Dawes EA (1976) Regulation of the tricarboxylic acid cycle and poly-3-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen and oxygen limitation. J Gen Microbiol 97:303–312

  43. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

  44. Jenkins LS, Nunn WD (1987) Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system. J Bacteriol 169(1):42–52

  45. Jordan DC, Grinyer I, Coulter WH (1963) Electron microscopy of infection threads and bacteria in young root nodules of Medicago sativa. J Bacteriol 86(1):125–137

  46. Kadouri D, Jurkevitch E, Okon Y (2003) Involvement of the reserve material poly-b-hydroxybutyrate in Azospirillum brasilense stress endurance and root colonization. Appl Environ Microbiol 69:3244–3250

  47. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe, A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7(6):331–338

  48. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002a) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9(6):189–197

  49. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002b) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9(6):225–256

  50. Karr DB, Waters JK, Emerich DW (1983) Analysis of poly-3-hydroxybutyrate in Rhizobium japonicum bacteroids by ion-exclusion high-pressure liquid chromatography and UV detection. Appl Environ Microbiol 46(6):1339–1344

  51. Karr DB, Waters JK, Suzuki F, Emerich DW (1984) Enzymes of the poly-3-hydroxybutyrate and citric acid cycles of Rhizobium japonicum bacteroids. Plant Physiol 75(4):1158–1162

  52. Kiersd ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

  53. Kim SA, Copeland L (1996) Enzymes of poly-(beta)-hydroxybutyrate metabolism in soybean and chickpea bacteroids. Appl Environ Microbiol 62:4186–4190

  54. Klucas RV, Evans HJ (1968) An electron donor system for nitrogenase-dependent acetylene reduction by extracts of soybean nodules. Plant Physiol 43(9):1458–1460

  55. Layzell DB, Hunt S, Palmer GR (1990) Mechanism of nitrogenase inhibition in soybean nodules. Pulse-modulated spectroscopy indicates that nitrogenase activity is limited by O2. Plant Physiol 92:1101–1107

  56. Lodwig EM, Hosie AHF, Bourdes A, Findlay K, Allaway D, Karunakaran, R, Downie JA, Poole PS (2003) Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Nature 422:722–726

  57. Lodwig EM, Leonard M, Marroqui S, Wheeler TR, Findlay K, Downie JA, Poole PS (2005) Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids. Mol Plant Microbe Interact 18(1):67–74

  58. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

  59. McDermott TR, Graham PH, Brandwein DH (1987) Viability of Bradyrhizobium japonicum bacteroids. Arch Microbiol 148(100–106)

  60. McRae DG, Miller RW, Berndt WB (1989) Viability of alfalfa nodule bacteroids isolated by density gradient centrifugation. Symbiosis 7:67–80

  61. Mercam N (2002) Production of polyhydroxybutyrate (PHB) by some rhizobium bacteria. Turk J Biol 26:215–219

  62. Page WJ, Knosp O (1989) Hyperproduction of poly-3-Hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl Environ Microbiol 55(6):1334–1339

  63. Page WJ, Tindale A, Chandra M, Kwon E (2001) Alginate formation in I UWD during stationary phase and the turnover of poly-3-hydroxybutyrate. Microbiology 147(2):483–490

  64. Peoples OP, Sinskey AJ (1989) Fine structural analysis of the Zoogloea ramigera phbA-phbB locus encoding b-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Mol Microbiol 3:349–357

  65. Peoples O, Masamune S, Walsh C, Sinskey A (1987) Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene. J Biol Chem 262(1):97–102

  66. Peralta-Gil M, Segura D, Guzman J, Servin-Gonzalez L, Espin G (2002) Expression of the Azotobacter vinelandii poly-3-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184(20):5672–5677

  67. Povolo S, Casella S (2000) A critical role of aniA in energy-carbon flux and symbiotic nitrogen fixation in Sinorhizobium meliloti. Arch Microbiol 174(1–2):42–49

  68. Povolo S, Tombolini R, Morea A, Anderson AJ, Casella S, Nuti MP (1994) Isolation and characterization of mutants of Rhizobium meliloti unable to synthesize poly-3-hydroxybutyrate (PHB). Can J Microbiol 40:823–829

  69. Pueppke SJ, Broughton WJ (1999) Rhizobium sp. NGR234 and R. fredii USDA257 share exceptionally broad, nested host range. Mol Plant Microbe Interact 12:293–318

  70. Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376(1):15–33

  71. Rehm BHA, Steinbüchel A (1999). Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 25(3):3–19

  72. Ronson RL, Postgate JR (1980) Oxygen and hydrogen in biological nitrogen fixation. Annu Rev Microbiol 34:183–207

  73. Ronson CW, Lyttleton P, Robertson JG (1981) C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules of Trifolium repens. Proc Natl Acad Sci USA 78(7):4284–4288

  74. Salminen S, Streeter JG (1992) Labeling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae bacteroids following incubation of intact nodules with C14. Plant Physiol 100:597–604

  75. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170(12):5837–5847

  76. Senior PJ, Dawes EA (1971) Poly-3-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijinkereii. Biochem J 125:55–66

  77. Senior PJ, Beech GA, Ritchie GAF, Dawes EA (1972) The role of oxygen limitation in the formation of poly-3-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128:1193–1201

  78. Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170(10):4431–4436

  79. Stam H, van Verseveld HW, de Vries W, Stouhamer AH (1986) Utilization of poly-3-hydroxybutyrate in free-living cultures of Rhizobium ORS571. FEMS Microbiol Lett 35:215–220

  80. Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128(3):219–228

  81. Stockdale H, Ribbons DW, Dawes EA (1968) Occurrence of poly-3-hydroxybutyrate in the Azotobacteriaceae. J Bacteriol 95(5):1798–1803

  82. Sutton WD, Paterson AD (1980) Effects of the host plant on the detergent sensitivity and viability of Rhizobium bacteroids. Planta 148:287–292

  83. Tanio T, Fukui T, Shirakura Y, Saito T, Tomita K, Kaiho T, Masamune S (1982) An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis. Eur J Biochem 124(1):71–11

  84. Tombolini R, Povolo S, Buson A, Squartini A, Nuti MP (1995) Poly-3-hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology 141:2553–2559

  85. Tsien HC, Cain PS, Schmidt EL (1977) Viability of Rhizobium bacteroids. Appl Environ Microbiol 34(6):854–856

  86. Udvardi MK, Day DA (1997) Metabolite transport across symbiotic membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48:493–523

  87. Udvardi MK, Price GD, Gresshoff PM, Day DA (1988) A dicarboxylate transporter on the peribacteroid membrane of soybean nodules. FEBS Lett 231(1):36–40

  88. USDA (2005) Average U.S. farm prices of selected fertilizers. Economic Research Service, United States Department of Agriculture, 2005

  89. van Veen J, van Overbeek L, van Elsas J (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61(2):121–135

  90. Vasse J, de Billy F, Camut S, Truchet G (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172(8):4295–4306

  91. Walshaw D, Wilkinson A, Mundy M, Smith M, Poole P (1997). Regulation of the TCA cycle and the general amino acid permease by overflow metabolism in Rhizobium leguminosarum. Microbiology 143(7):2209–2221

  92. Willis LB, Walker GC (1998) The phbC (poly-3-hydroxybutyrate synthase) gene of Rhizobium (Sinorhizobium) meliloti and characterization of phbC mutants. Can J Microbiol 44(6):554–564

  93. Wong PP, Evans HJ (1971) Poly-3-hydroxybutyrate utilization by soybean (Glycine max Merr.) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol 47(6):750–755

  94. Yang LJO, Udvardi MK, Day DA (1990). Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules. Planta 182:437–444

  95. Zevenhuizen LPTM (1981) Cellular glycogen, B-1,2-glucan, poly-3-hydroxybutyic acid and extracellular polysaccharides in fast-growing species of Rhizobium. Antonie van Leeuwenhoek 47:481–497

Download references

Acknowledgements

The authors would like to thank Scott Clark for critical appraisal and helpful discussion. Research on PHB metabolism in the laboratory of T. C. Charles is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Agribiotics, Inc.

Author information

Correspondence to Trevor C. Charles.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trainer, M.A., Charles, T.C. The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71, 377–386 (2006). https://doi.org/10.1007/s00253-006-0354-1

Download citation

Keywords

  • Rhizobium
  • PHAs
  • Malic Enzyme
  • Indeterminate Nodule
  • Determinate Nodule