Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Biotransformation of tolbutamide to 4′-hydroxytolbutamide by the fungus Cunninghamella blakesleeana

  • 140 Accesses

  • 12 Citations

Abstract

The hypoglycemic drug tolbutamide is commonly used as a probe drug to evaluate CYP2C9 enzyme activity in terms of production of 4′-hydroxytolbutamide. In the present study, an initial screening of seven filamentous fungi was carried out to identify which was most competent to transform tolbutamide into 4′-hydroxytolbutamide. From this screening, the fungus Cunninghamella blakesleeana AS 3.910 was selected as a suitable bioconverter. At a concentration of 1.2 mg ml−1, the growing fungus transformed 95.0% of tolbutamide into 4′-hydroxytolbutamide in 96 h. With resting culture, the yield could reach 91.7% and exceeded 91.0% even when the tolbutamide concentration was increased to 4.0 mg ml−1. On scale-up to 3 l buffer containing 12.0 g tolbutamide, 90% of tolbutamide was transformed into 4′-hydroxytolbutamide in 96 h. Work-up of the broth by column chromatography and recrystallization yielded 6.5 g (53.9% recovered) of 4′-hydroxytolbutamide with a purity of more than 99%. These results suggest C. blakesleeana AS 3.910 is a useful biosynthetic tool in the preparation of 4′-hydroxytolbutamide.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abourashed EA, Clark AM, Hufford CD (1999) Microbial models of mammalian metabolism of xenobiotics: an updated review. Curr Med Chem 6:359–374

  2. Andersson TB, Bredberg E, Ericsson H, Sjoeberg H (2004) An evaluation of the in vitro metabolism data for predicting the clearance and drug–drug interaction potential of CYP2C9 substrates. Drug Metab Dispos 32:715–721

  3. Azerad R (1999) Microbial models for drug metabolism. Adv Biochem Eng Biotechnol 63:169–218

  4. Bjornsson TD, Callaghan JT, Einolf HJ, Fischer V et al (2003) The conduct of in vitro and in vivo drug–drug interaction studies: a pharmaceutical research and manufacturers of America (PhRMA) perspective. Drug Metab Dispos 31:815–832

  5. Blakey GE, Lockton JA, Perrett J, Norwood P et al (2004) Pharmacokinetic and pharmaco-dynamic assessment of a five-probe metabolic cocktail for CYPs 1A2, 3A4, 2C9, 2D6 and 2E1. Br J Clin Pharmacol 57:162–169

  6. Cha C, Doerge DR, Cerniglia CE (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl Environ Microbiol 67:4358–4360

  7. Jetter A, Kinzig-Schippers M, Skott A, Lazar A et al (2004) Cytochrome P450 2C9 phenotyping using low-dose tolbutamide. Eur J Clin Pharmacol 60:165–171

  8. Kirchheiner J, Bauer S, Meineke I, Rohde W et al (2002) Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 12:101–109

  9. Lee CR, Pieper JA, Frye RF, Hinderliter AL et al (2003) Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J Clin Pharmacol 43:84–91

  10. Li Q, Huang HH, Dong Y, Zhong DF (2005) Investigation on the hydroxylation metabolism of imrecoxib in vitro by recombinant human CYPs. Yao Xue Xue Bao 40:912–915

  11. Makaya O, Irie H, Shibasaki J (1983) An improved synthesis of N-(butylaminocarbonyl)-4-hydroxymethyl-benzenesulfonamide, one of the metabolites of tolbutamide, and synthesis of its formyl derivative. Chem Pharm Bull 31:2518–2519

  12. Miners JO, Birkett DJ (1996) Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods Enzymol 272:139–145

  13. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

  14. Moody JD, Freeman JP, Fu PP, Cerniglia CE (2002) Transformation of mirtazapine by Cunninghamella elegans. Drug Metab Dispos 30:1274–1279

  15. Peart GF, Boutagy J, Shenfield GM (1987) Lack of relationship between tolbutamide metabolism and debrisoquine oxidation phenotype. Eur J Clin Pharmacol 33:397–402

  16. Relling MV, Aoyama T, Gonzalez FJ, Meyer UA (1990) Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 252:442–447

  17. Rendic S, Di Carlo FJ (1997) Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29:413–583

  18. Schwarz UL (2003) Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest 33(Suppl 2):23–30

  19. Srisilam K, Veeresham C (2003) Biotransformation of drugs by microbial cultures for predicting mammalian drug metabolism. Biotechnol Adv 21:3–39

  20. Streetman DS, Bertion JS, Nafziger AN (2000) Phenotyping of drug metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 10:187–216

  21. Sun L, Huang HH, Liu L, Zhong DF (2004) Transformation of verapamil by Cunninghamella balkesleeama. Appl Environ Microbiol 70:2722–2727

  22. Tassaneeyakul W, Veroness ME, Birkett DJ (1992) Co-regulation of phenytoin and tolbutamide metabolism in humans. Br J Clin Pharmacol 34:494–498

  23. Venisetty RK, Ciddi V (2003) Application of microbial biotransformation for new drug discovery using natural drugs as substrates. Curr Pharm Biotechnol 4:153–167

  24. Walsky RL, Obach RS (2004) Validated assays for human cytochrome P450 activities. Drug Metab Dispos 32:647–660

  25. Webster R, Pacey M, Winchester T, Johnson P et al (1998) Microbial oxidative metabolism of diclofenac: production of 4′-hydroxydiclofenac using Epiccocum nigrum IMI354292. Appl Microbiol Biotechnol 49:371–376

  26. Yuan R, Madani S, Wei XX, Reynolds K et al (2002) Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30:1311–1319

  27. Zhong DF, Sun L, Liu L, Huang HH (2003) Microbial transformation of naproxen by Cunninghamella species. Acta Pharmacol Sin 24:442–447

Download references

Acknowledgement

This work was supported by Grant 2003AA2Z347C of the 863 Program of China.

Author information

Correspondence to Dafang Zhong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, H., Yang, X., Li, Q. et al. Biotransformation of tolbutamide to 4′-hydroxytolbutamide by the fungus Cunninghamella blakesleeana . Appl Microbiol Biotechnol 72, 486–491 (2006). https://doi.org/10.1007/s00253-005-0301-6

Download citation

Keywords

  • Nuclear Magnetic Resonance
  • Biotransformation
  • Tolbutamide
  • CYP2C9 Activity
  • Cunninghamella