Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes

  • 581 Accesses

  • 61 Citations


We constructed a mesophilic anaerobic chemostat that was continuously fed with synthetic wastewater containing propionate as the sole source of carbon and energy. Steady-state conditions were achieved below the critical dilution rate of 0.3 d −1 with almost complete substrate degradation. The propionate-degrading methanogenic communities in the chemostat at dilution rates of 0.01, 0.08, and 0.3 d −1 were analyzed using molecular biological techniques. Fluorescence in situ hybridization with archaeal and bacterial domain-specific probes showed that archaeal cells predominated throughout the three dilution rates. Archaeal-16S rRNA gene clone library analysis and quantitative real-time polymerase chain reaction studies showed that hydrogenotrophic methanogen rRNA genes closely related to Methanoculleus was detected at a dilution rate of 0.01 d −1, whereas rRNA genes closely related to the Methanoculleus and Methanospirillum genera were detected at dilution rates of 0.08 and 0.3 d −1. The aceticlastic methanogen, Methanosaeta, was detected throughout the three dilution rates. Bacterial-rRNA gene clone library analysis and denaturing gradient gel electrophoresis demonstrated that rRNA genes affiliated with the genus Syntrophobacter predominated at the low dilution rate, whereas rRNA genes affiliated with the phylum Firmicutes predominated at the higher dilution rates. A significant number of rRNA genes affiliated with the genus Pelotomaculum were detected at dilution rate of 0.3 d −1. The diversity of genes encoding acetate kinase agreed closely with the results of the rRNA gene analysis. The dilution rates significantly altered the archaeal and bacterial communities in the propionate-fed chemostat.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240

  2. Altschul SF, Madden TL, Schäffer AA, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

  3. Amann RI (1995) In situ identification of micro-organisms by whole-cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, Elsas JD, de Bruijin FJ (eds) Molecular microbial ecology manual, section 3.3.6. Kluwer, Dordrecht, pp 1–15

  4. Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

  5. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

  6. Boone DR, Bryant MP (1980) Propionate-degrading bacterium,Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

  7. Boone DR, Whitman WB, Koga Y (2001) Order III.Methanosarcinales ord. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology (theArchaea and the deeply branching and phototrophic bacteria), vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 268–294

  8. Buss KA, Cooper DR, Ingram-Smith C, Ferry JG, Sanders DA, Hasson MS (2001) Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J Bacteriol 183:680–686

  9. Chen S, Liu X, Dong X (2005)Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–1324

  10. Chin K-J, Hahn D, Hengstmann U, Liesack W, Janssen PH (1999) Characterization and identification of numerically abundant culturable bacteria from the anoxic bulk soil of rice paddy microcosms. Appl Environ Microbiol 65:5042–5049

  11. Chong SC, Liu Y, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp. nov., a H 2 -using methanogen from Skan Bay, Alaska, and kinetics of H 2 utilization. Antonie van Leeuwenhoek 81:263–270

  12. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

  13. de Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei . Appl Environ Microbiol 67:1800–1804

  14. de Bok FAM, Harmsen JM, Plugge CM, de Vries MC, Akkermans ADL, deVos WM, Stams AJM (2005) The first true obligately syntrophic propionate-oxidizing bacterium,Pelotomaculum schinkii sp. nov., cocultured withMethanospirillum hungatei , and emended description of the genusPelotomaculum . Int J Syst Evol Microbiol 55:1697–1703

  15. Erkel C, Kemnitz D, Kube M, Ricke P, Chin K-J, Dedysh S, Reinhardt R, Conrad R, Liesack W (2005) Retrieval of first genome data for rice cluster I methanogens by a combination of cultivation and molecular techniques. FEMS Microbiol Ecol 53:187–204

  16. Felsenstein J (1985) Confidence limits of phylogenesis: an approach using the bootstrap. Evolution 39:783–791

  17. Ferry JG (1993) Fermentation of acetate. In: Ferry JG (ed)Methanogenesis . Chapman & Hall, New York, pp 304–334

  18. Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668–675

  19. Harmsen HJM, Akkermans ADL, Stams AJM, De Vos WM (1996) Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl Environ Microbiol 62:2163–2168

  20. Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998)Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate reducing bacterium. Int J Syst Bacteriol 48:1383–1387

  21. Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation. Arch Microbiol 155:52–55

  22. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376

  23. Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2000) Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615

  24. Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002)Pelotomaculum thermopropionicum gen. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52:1729–1735

  25. Ingram-Smith C, Barber RD, Ferry JG (2000) The role of histidines in the acetate kinase fromMethanosarcina thermophila . J Biol Chem 275:33765–33770

  26. Kida K, Morimura S, Sonoda Y (1993) Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-shochu making. J Ferment Bioeng 75:213–216

  27. Kida K, Shigematsu T, Kijima J, Numaguchi M, Mochinaga Y, Abe N, Morimura S (2001) Influence of Ni 2+ and Co 2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. J Biosci Bioeng 91:590–595

  28. Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

  29. Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414

  30. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5:150–163

  31. Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic propionate-degrading syntrophsSmithella propionica gen. nov., sp. nov. andSyntrophobacter wolinii . Int J Syst Bacteriol 49:545–556

  32. Lueders T, Chin K-J, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA ) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

  33. Lueders T, Pommerenke B, Friedrich MW (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70:5778–5786

  34. Mikucki JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description ofMethanoculleus submarinus sp. nov. Appl Environ Microbiol 69:3311–3316

  35. Namiki H (1986) Testing methods for industrial wastewater, JIS K 0102-1986, Japanese Standards Association, Tokyo

  36. Nilsen RK, Torsvik T, Lien T (1996)Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int J Syst Bacteriol 46:397–402

  37. Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

  38. Plugge C, Balk M, Stams AJM (2002)Desulfotomaculum thermobenzoicum subsp.thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52:391–399

  39. Raskin L, Stromley JM, Rittmann BE, Stahl DA (1994) Group-specific 16S rRNA probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240

  40. Saitou N, Nei M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

  41. Schink B, Stams AJM (2002) Syntrophism among prokaryotes. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Springer, Berlin Heidelberg New York. http://link.springer-ny.com/link/service/books/10125 (release 3.8)

  42. Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by16S rRNA gene analysis. Microbiology 144:2655–2665

  43. Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (1999) Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288

  44. Sekiguchi Y, Kamagata Y, Harada H (2001) Recent advances in methane fermentation technology. Curr Opin Biotechnol 12:277–282

  45. Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558

  46. Shigematsu T, Tang Y, Kobayashi T, Kawaguchi H, Morimura S, Kida K (2004) Effect of dilution rate on metabolic pathway shift between aceticlastic and non-aceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70:4048–4052

  47. Stahl DA, Amann RI (1991) Development and application of nucleic acid probes. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 205–248

  48. Tang Y, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38:2537–2550

  49. Tang Y, Shigematsu T, Morimura S, Kida K (2005) Microbial community analysis of mesophilic anaerobic protein degradation process using bovine serum albumin (BSA)-fed continuous cultivation. J Biosci Bioeng 99:150–164

  50. Thauer RK, Hedderich R, Fischer R (1993) Reactions and enzymes involved in methanogenesis from CO 2 and H 2 . In: Ferry JG (ed)Methanogenesis . Chapman & Hall, New York, pp 209–252

  51. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

  52. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

  53. Wallrabenstein C, Hauschild E, Schink B (1995)Syntrophobacter pfennigii sp. nov., new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate sulfate. Arch Microbiol 164:346–352

  54. Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism inSyntrophomonas wolfei . J Bacteriol 167:179–185

  55. Yumihara K, Shigematsu T, Hamada K, Morimura S, Kida K (2002) Anaerobic degradation of terephthalic acid and aniline by methanogenic consortia. Jpn J Water Treat Biol 38:1–9

  56. Zeikus JG (1977) The biology of methanogenic bacteria. Bacteriol Rev 41:514–541

  57. Zellner G, Messner P, Winter J, Stackebrandt E (1998)Methanoculleus palmolei sp. nov., and irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatora, Indonesia. Int J Syst Bacteriol 48:1111–1117

  58. Zinder SH (1993) Physiological ecology of methanogens. In: Ferry JG (ed)Methanogenesis . Chapman & Hall, New York, pp 128–206

Download references


This study was financially supported by a Grant-in-Aid for Scientific Research (Project Nos. 14580593 and 16510061) from the Japan Society for the Promotion of Science (JSPS). The authors thank Katsumi Kai at Kumamoto University for excellent technical assistance.

Author information

Correspondence to Toru Shigematsu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shigematsu, T., Era, S., Mizuno, Y. et al. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl Microbiol Biotechnol 72, 401–415 (2006). https://doi.org/10.1007/s00253-005-0275-4

Download citation


  • Dilution Rate
  • Firmicutes
  • Methanosaeta
  • Hydrogenotrophic Methanogen
  • High Dilution Rate