Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784

Abstract

Cytochrome P450RhF from Rhodococcus sp. NCIMB 9784 is a self-sufficient P450 monooxygenase. We report here a simple system for the functional expression of various P450 genes using the reductase domain of this P450RhF, which comprises flavin mononucleotide- and nicotinamide adenine dinucleotide phosphate binding motifs and a [2Fe2S] ferredoxin-like center. Vector pRED was constructed, which carried the T7 promoter, cloning sites for a P450, a linker sequence, and the P450RhF reductase domain, in this order. The known P450 genes, encoding P450cam from Pseudomonas putida (CYP101A) and P450bzo from an environmental metagenome library (CYP203A), were expressed on vector pRED as soluble fusion enzymes with their natural spectral features in Escherichia coli. These E. coli cells expressing the P450cam and P450bzo genes could convert (+)-camphor and 4-hydroxybenzoate into 5-exo-hydroxycamphor and protocatechuate (3,4-dihydroxybenzoate), respectively (the expected products). Using this system, we also succeeded in directly identifying the function of P450 CYP153A as alkane 1-monooxygenase for the first time, i.e., E. coli cells expressing a P450 CYP153A gene named P450balk, which was isolated form Alcanivorax borkumensis SK2, converted octane into 1-octanol with high efficiency (800 mg/l). The system presented here may be applicable to the functional identification of a wide variety of bacterial cytochromes P450.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147

  2. Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674

  3. Budde M, Maurer SC, Schmid RD, Urlacher VB (2004) Cloning, expression and characterisation of CYP102A2, a self-sufficient P450 monooxygenase from Bacillus subtilis. Appl Microbiol Biotechnol 66:180–186

  4. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver S, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton S, Squares S, Squares R, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

  5. Eggink G, Lageveen RG, Altenburg B, Witholt B (1987) Controlled and functional expression of the Pseudomonas olevorans alkane utilizing system in Pseudomonas putida and Escherichia coli. J Biol Chem 262:17712–17718

  6. Fujii T, Narikawa T, Takeda K, Kato J (2004) Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. Biosci Biotechnol Biochem 68:2171–2177

  7. Grogan G, Roberts GA, Parsons S, Turner NJ, Flitsch SL (2002) P450(camr), a cytochrome P450 catalysing the stereospecific 6-endo-hydroxylation of (1 R)-(+)-camphor. Appl Microbiol Biotechnol 59:449–454

  8. Hara A, Baik S-H, Syutubo K, Misawa N, Smits THM, van Beilen JB, Harayama S (2004) Cloning and functional analysis of alkB genes in Alcanivorax borkumensis SK2. Environ Microbiol 6:191–197

  9. Jenkins CM, Waterman MR (1994) Flavodoxin and NADPH-flavodoxin reductase from Escherichia coli support bovine cytochrome P450c17 hydroxylase activities. J Biol Chem 269:27401–27408

  10. Kawahara N, Ikatsu H, Kawata H, Miyoshi S, Tomochika K, Sinoda S (1999) Purification and characterization of 2-ethoxyphenol-induced cytochrome P450 from Corynebacterium sp. strain EP1. Can J Microbiol 45:833–839

  11. Kellner DG, Maves SA, Sligar SG (1997) Engineering cytochrome P450s for bioremediation. Curr Opin Biotechnol 3:274–278

  12. Koga H, Rauchfuss B, Gunsalus IC (1985) P450cam gene cloning and expression in Pseudomonas putida and Escherichia coli. Biochem Biophys Res Commun 130:412–417

  13. Lewis DF (1996) Cytochromes P450: structure, function and mechanism. Taylor & Francis, London

  14. Li Q-S, Ogawa J, Schmid RD, Shimizu S (2001) Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5735–5739

  15. Maier T, Forster HH, Asperger O, Hahn U (2001) Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem Biophys Res Commun 286:652–658

  16. Matson RS, Hare RS, Fulco AJ (1977) Characteristics of a cytochrome P-450-dependent fatty acid omega-2 hydroxylase from Bacillus megaterium. Biochim Biophys Acta 487:487–494

  17. Munro AW, Noble MA, Ost TW, Green AJ, McLean KJ, Robledo L, Miles CS, Murdoch J, Chapman SK (2000) Flavocytochrome P450 BM3 substrate selectivity and electron transfer in a model cytochrome P450. Subcell Biochem 35:297–315

  18. Nakayama N, Takemae A, Shoun H (1996) Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J Biochem 119:435–440

  19. Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

  20. Nebers DW, Gonzalez FJ (1987) P450 genes: structure, evolution and regulation. Annu Rev Biochem 56:945–993

  21. Parajuli N, Basnet DB, Chan LH, Sohng JK, Liou K (2004) Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces. Arch Biochem Biophys 425:233–241

  22. Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184:3898–3908

  23. Roberts GA, Celik A, Hunter DJ, Ost TW, White JH, Chapman SK, Turner NJ, Flitsch SL (2003) A self-sufficient cytochrome P450 with a primary structural organization that includes a flavin domain and a [2Fe-2S] redox center. Biol Chem 278:48914–48920

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  25. Shet MS, Fisher CW, Estabrook RW (1997) The function of recombinant cytochrome P450s in intact Escherichia coli cells: the 17 alpha-hydroxylation of progesterone and pregnenolone by P450c17. Arch Biochem Biophys 339:218–225

  26. Takemori S, Yamazaki T, Ikushiro S (1993) Cytochrome P-450-linked electron transport system in monooxygenase reaction. In: Omura T, Ishimura Y, Fujii-Kuriyama Y (eds) Cytochrome P450, 2nd edn. VCH, New York

  27. Teramoto M, Takaichi S, Inomata Y, Ikenaga H, Misawa N (2003) Structural and functional analysis of a lycopene β-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126

  28. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93

  29. Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325

  30. Whyte LG, Smits THM, Labbe D, Witholt B, Geer CW, van Beilen JB (2002) Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl Environ Microbiol 68:5933–5942

Download references

Acknowledgements

The authors thank Dr. Taku Uchiyama for presenting Bzo71-8 and Miyuki Haga and Yukie Inomata for their technical contributions. This work was supported by Biotechnology and Medical Technology Development Department of New Energy and Industrial Technology Development Organization (NEDO).

Author information

Correspondence to Norihiko Misawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nodate, M., Kubota, M. & Misawa, N. Functional expression system for cytochrome P450 genes using the reductase domain of self-sufficient P450RhF from Rhodococcus sp. NCIMB 9784. Appl Microbiol Biotechnol 71, 455–462 (2006). https://doi.org/10.1007/s00253-005-0147-y

Download citation

Keywords

  • Flavin Adenine Dinucleotide
  • Reductase Domain
  • Alkane Hydroxylase
  • Heme Domain
  • Converted Product