Advertisement

Immunogenetics

, Volume 71, Issue 3, pp 251–261 | Cite as

Origin and evolution of the specialized forms of proteasomes involved in antigen presentation

  • Masanori KasaharaEmail author
  • Martin F. FlajnikEmail author
Review
Part of the following topical collections:
  1. Biology and Evolution of Antigen Presentation

Abstract

Proteasomes are a multi-subunit protease complex that produces peptides bound by major histocompatibility complex (MHC) class I molecules. Phylogenetic studies indicate that two specialized forms of proteasomes, immunoproteasomes and thymoproteasomes, and the proteasome activator PA28αβ emerged in a common ancestor of jawed vertebrates which acquired adaptive immunity based on the MHC, T cell receptors, and B cell receptors ~ 500 million years ago. Comparative genomics studies now provide strong evidence that the genes coding for the immunoproteasome subunits emerged by genome-wide duplication. On the other hand, the gene encoding the thymoproteasome subunit β5t emerged by tandem duplication from the gene coding for the β5 subunit. Strikingly, birds lack immunoproteasomes, thymoproteasomes, and the proteasome activator PA28αβ, raising an interesting question of whether they have evolved any compensatory mechanisms.

Keywords

Adaptive immune system Genome-wide duplication Immunoproteasome Proteasome activator Thymoproteasome 

Notes

Acknowledgements

We thank Dr. Yoichi Sutoh, Iwate Tohoku Medical Megabank Organization, Iwate Medical University, for his help in preparing Fig. 2.

Funding

Experimental work from the authors’ laboratories has been supported by grants from The Ministry of Education, Culture, Sports, Science and Technology, Japan, and The National Institutes of Health, USA (RO1AI140326).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdulla S, Beck S, Belich M, Jackson A, Nakamura T, Trowsdale J (1996) Divergent intron arrangement in the MB1/LMP7 proteasome gene pair. Immunogenetics 44:254–258CrossRefGoogle Scholar
  2. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka H, Nothwang HG, Noda C, Tanaka K, Ichihara A (1994) cDNA cloning and interferon γ down-regulation of proteasomal subunits X and Y. Science 265:1231–1234CrossRefGoogle Scholar
  3. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A (2018) Structure and function of the 26S proteasome. Annu Rev Biochem 87:697–724CrossRefGoogle Scholar
  4. Blair JE, Hedges SB (2005) Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22:2275–2284CrossRefGoogle Scholar
  5. Boehm T (2011) Design principles of adaptive immune systems. Nat Rev Immunol 11:307–317CrossRefGoogle Scholar
  6. Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD (2012) VLR-based adaptive immunity. Annu Rev Immunol 30:203–220CrossRefGoogle Scholar
  7. Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19–42CrossRefGoogle Scholar
  8. Cascio P (2014) PA28αβ: the enigmatic magic ring of the proteasome? Biomolecules 4:566–584CrossRefGoogle Scholar
  9. Clark MS, Pontarotti P, Gilles A, Kelly A, Elgar G (2000) Identification and characterization of a β proteasome subunit cluster in the Japanese pufferfish (Fugu rubripes). J Immunol 165:4446–4452CrossRefGoogle Scholar
  10. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806CrossRefGoogle Scholar
  11. Cooper MD, Alder MN (2006) The evolution of adaptive immune systems. Cell 124:815–822CrossRefGoogle Scholar
  12. Dolenc I, Seemuller E, Baumeister W (1998) Decelerated degradation of short peptides by the 20S proteasome. FEBS Lett 434:357–361CrossRefGoogle Scholar
  13. Du Pasquier L, Wilson M, Sammut B (2009) The fate of duplicated immunity genes in the dodecaploid Xenopus ruwenzoriensis. Front Biosci (Landmark Ed) 14:177–191CrossRefGoogle Scholar
  14. Erath S, Groettrup M (2015) No evidence for immunoproteasomes in chicken lymphoid organs and activated lymphocytes. Immunogenetics 67:51–60CrossRefGoogle Scholar
  15. Flajnik MF (2018a) A cold-blooded view of adaptive immunity. Nat Rev Immunol 18:438–453CrossRefGoogle Scholar
  16. Flajnik MF (2018b) A convergent immunological holy trinity of adaptive immunity in lampreys: discovery of the variable lymphocyte receptors. J Immunol 201:1331–1335CrossRefGoogle Scholar
  17. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15:351–362CrossRefGoogle Scholar
  18. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59CrossRefGoogle Scholar
  19. Flajnik MF, Kaufman JF, Du Pasquier L (1985) Studies on the Xenopus major histocompatibility complex. Dev Comp Immunol 9:777–781CrossRefGoogle Scholar
  20. Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M (1999) Insights into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 167:59–67CrossRefGoogle Scholar
  21. de Graaf N, van Helden MJ, Textoris-Taube K, Chiba T, Topham DJ, Kloetzel PM, Zaiss DM, Sijts AJ (2011) PA28 and the proteasome immunosubunits play a central and independent role in the production of MHC class I-binding peptides in vivo. Eur J Immunol 41:926–935CrossRefGoogle Scholar
  22. Griffin TA, Nandi D, Cruz M, Fehling HJ, Kaer LV, Monaco JJ, Colbert RA (1998) Immunoproteasome assembly: cooperative incorporation of interferon γ (IFN-γ)-inducible subunits. J Exp Med 187:97–104CrossRefGoogle Scholar
  23. Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee H-G, Koszinowski UH, Kloetzel P-M (1996) A role for the proteasome regulator PA28α in antigen presentation. Nature 381:166–168CrossRefGoogle Scholar
  24. Hayashi M, Ishibashi T, Tanaka K, Kasahara M (1997) The mouse genes encoding the third pair of β-type proteasome subunits regulated reciprocally by IFN-γ: structural comparison, chromosomal localization, and analysis of the promoter. J Immunol 159:2760–2770Google Scholar
  25. Heemels M-T, Ploegh H (1995) Generation, translocation, and presentation of MHC class I-restricted peptides. Annu Rev Biochem 64:463–491CrossRefGoogle Scholar
  26. Heink S, Ludwig D, Kloetzel PM, Kruger E (2005) IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci U S A 102:9241–9246CrossRefGoogle Scholar
  27. Hirano M, Guo P, McCurley N, Schorpp M, Das S, Boehm T, Cooper MD (2013) Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:435–438CrossRefGoogle Scholar
  28. Huang CH, Tanaka Y, Fujito NT, Nonaka M (2013) Dimorphisms of the proteasome subunit β type 8 gene (PSMB8) of ectothermic tetrapods originated in multiple independent evolutionary events. Immunogenetics 65:811–821CrossRefGoogle Scholar
  29. Jastrab JB, Darwin KH (2015) Bacterial proteasomes. Annu Rev Microbiol 69:109–127CrossRefGoogle Scholar
  30. Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:19–31CrossRefGoogle Scholar
  31. Kandil E, Namikawa C, Nonaka M, Greenberg AS, Flajnik MF, Ishibashi T, Kasahara M (1996) Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates: implications for the origin of MHC class I-restricted antigen presentation. J Immunol 156:4245–4253Google Scholar
  32. Kandil E, Kohda K, Ishibashi T, Tanaka K, Kasahara M (1997) PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes. Immunogenetics 46:337–344CrossRefGoogle Scholar
  33. Kasahara M (1998) What do the paralogous regions in the genome tell us about the origin of the adaptive immune system? Immunol Rev 166:159–175CrossRefGoogle Scholar
  34. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19:547–552CrossRefGoogle Scholar
  35. Kasahara M (2010) Genome duplication and T cell immunity. Prog Mol Biol Transl Sci 92:7–36CrossRefGoogle Scholar
  36. Kasahara M (2013) Impact of whole-genome duplication on vertebrate development and evolution. Semin Cell Dev Biol 24:81–82CrossRefGoogle Scholar
  37. Kasahara M, Sutoh Y (2014) Two forms of adaptive immunity in vertebrates: similarities and differences. Adv Immunol 122:59–90CrossRefGoogle Scholar
  38. Kasahara M, Hayashi M, Tanaka K, Inoko H, Sugaya K, Ikemura T, Ishibashi T (1996) Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci U S A 93:9096–9101CrossRefGoogle Scholar
  39. Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236CrossRefGoogle Scholar
  40. Kaufman J (2015) What chickens would tell you about the evolution of antigen processing and presentation. Curr Opin Immunol 34:35–42CrossRefGoogle Scholar
  41. Kaufman J (2018a) Generalists and specialists: a new view of how MHC class I molecules fight infectious pathogens. Trends Immunol 39:367–379CrossRefGoogle Scholar
  42. Kaufman J (2018b) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409CrossRefGoogle Scholar
  43. Kaufman J, Milne S, Gobel TW, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925CrossRefGoogle Scholar
  44. Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC, Welsh RM, Karow ML, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rock KL (2011) Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat Immunol 13:129–135CrossRefGoogle Scholar
  45. Klein L, Kyewski B, Allen PM, Hogquist KA (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14:377–391CrossRefGoogle Scholar
  46. Kniepert A, Groettrup M (2014) The unique functions of tissue-specific proteasomes. Trends Biochem Sci 39:17–24CrossRefGoogle Scholar
  47. Kobel HR, Du Pasquier L (1986) Genetics of polyploid Xenopus. Trends Genet 2:310–315CrossRefGoogle Scholar
  48. Kohda K, Matsuda Y, Ishibashi T, Tanaka K, Kasahara M (1997) Structural analysis and chromosomal localization of the mouse Psmb5 gene coding for the constitutively expressed β-type proteasome subunit. Immunogenetics 47:77–87CrossRefGoogle Scholar
  49. Kohda K, Ishibashi T, Shimbara N, Tanaka K, Matsuda Y, Kasahara M (1998) Characterization of the mouse PA28 activator complex gene family: complete organizations of the three member genes and a physical map of the ~150-kilobase region containing the α- and β-subunit genes. J Immunol 160:4923–4935Google Scholar
  50. Kondo K, Ohigashi I, Takahama Y (2018) Thymus machinery for T-cell selection. Int Immunol.  https://doi.org/10.1093/intimm/dxy081
  51. Kuraku S, Zmasek CM, Nishimura O, Katoh K (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res 41:W22–W28CrossRefGoogle Scholar
  52. Lovell PV, Wirthlin M, Wilhelm L, Minx P, Lazar NH, Carbone L, Warren WC, Mello CV (2014) Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol 15:565CrossRefGoogle Scholar
  53. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268:533–539CrossRefGoogle Scholar
  54. Lukacs MF, Harstad H, Grimholt U, Beetz-Sargent M, Cooper GA, Reid L, Bakke HG, Phillips RB, Miller KM, Davidson WS, Koop BF (2007) Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics 8:251CrossRefGoogle Scholar
  55. Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X, Blyth GA, Blaine AH (2013) Defense genes missing from the flight division. Dev Comp Immunol 41:377–388CrossRefGoogle Scholar
  56. Maupin-Furlow J (2011) Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10:100–111CrossRefGoogle Scholar
  57. McConnell SC, Hernandez KM, Wcisel DJ, Kettleborough RN, Stemple DL, Yoder JA, Andrade J, de Jong JLO (2016) Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution. Proc Natl Acad Sci U S A 113:E5014–E5023CrossRefGoogle Scholar
  58. McCusker D, Wilson M, Trowsdale J (1999) Organization of the genes encoding the human proteasome activators PA28α and β. Immunogenetics 49:438–445CrossRefGoogle Scholar
  59. Mehta TK, Ravi V, Yamasaki S, Lee AP, Lian MM, Tay BH, Tohari S, Yanai S, Tay A, Brenner S, Venkatesh B (2013) Evidence for at least six Hox clusters in the Japanese lamprey (Lethenteron japonicum). Proc Natl Acad Sci U S A 110:16044–16049CrossRefGoogle Scholar
  60. Michalova V, Murray BW, Sultmann H, Klein J (2000) A contig map of the Mhc class I genomic region in the zebrafish reveals ancient synteny. J Immunol 164:5296–5305CrossRefGoogle Scholar
  61. Murata S, Udono H, Tanahashi N, Hamada N, Watanabe K, Adachi K, Yamano T, Yui K, Kobayashi N, Kasahara M, Tanaka K, Chiba T (2001) Immunoproteasome assembly and antigen presentation in mice lacking both PA28α and PA28β. EMBO J 20:5898–5907CrossRefGoogle Scholar
  62. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353CrossRefGoogle Scholar
  63. Murata S, Takahama Y, Kasahara M, Tanaka K (2018) The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol 19:923–931CrossRefGoogle Scholar
  64. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10:458–467CrossRefGoogle Scholar
  65. Namikawa C, Salter-Cid L, Flajnik MF, Kato Y, Nonaka M, Sasaki M (1995) Isolation of Xenopus LMP-7 homologues. Striking allelic diversity and linkage to MHC. J Immunol 155:1964–1971Google Scholar
  66. Nikaido T, Shimada K, Shibata M, Hata M, Sakamoto M, Takasaki Y, Sato C, Takahashi T, Nishida Y (1990) Cloning and nucleotide sequence of cDNA for Ki antigen, a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus. Clin Exp Immunol 79:209–214CrossRefGoogle Scholar
  67. Nitta T, Murata S, Sasaki K, Fujii H, Ripen AM, Ishimaru N, Koyasu S, Tanaka K, Takahama Y (2010) Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32:29–40CrossRefGoogle Scholar
  68. Nonaka M, Namikawa-Yamada C, Sasaki M, Salter-Cid L, Flajnik MF (1997a) Evolution of proteasome subunits δ and LMP2: complementary DNA cloning and linkage analysis with MHC in lower vertebrates. J Immunol 159:734–740Google Scholar
  69. Nonaka M, Namikawa C, Kato Y, Sasaki M, Salter-Cid L, Flajnik MF (1997b) Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. Proc Natl Acad Sci U S A 94:5789–5791CrossRefGoogle Scholar
  70. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkCrossRefGoogle Scholar
  71. Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168:771–781CrossRefGoogle Scholar
  72. Ohta Y, Powis SJ, Lohr RL, Nonaka M, Pasquier LD, Flajnik MF (2003) Two highly divergent ancient allelic lineages of the transporter associated with antigen processing (TAP) gene in Xenopus: further evidence for co-evolution among MHC class I region genes. Eur J Immunol 33:3017–3027CrossRefGoogle Scholar
  73. Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176:3674–3685CrossRefGoogle Scholar
  74. Preckel T, Fung-Leung WP, Cai Z, Vitiello A, Salter-Cid L, Winqvist O, Wolfe TG, Von Herrath M, Angulo A, Ghazal P, Lee JD, Fourie AM, Wu Y, Pang J, Ngo K, Peterson PA, Fruh K, Yang Y (1999) Impaired immunoproteasome assembly and immune responses in PA28-/- mice. Science 286:2162–2165CrossRefGoogle Scholar
  75. Salter-Cid L, Nonaka M, Flajnik MF (1998) Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. J Immunol 160:2853–2861Google Scholar
  76. Sasaki K, Takada K, Ohte Y, Kondo H, Sorimachi H, Tanaka K, Takahama Y, Murata S (2015) Thymoproteasomes produce unique peptide motifs for positive selection of CD8(+) T cells. Nat Commun 6:7484CrossRefGoogle Scholar
  77. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343CrossRefGoogle Scholar
  78. Smith JJ, Timoshevskaya N, Ye C, Holt C, Keinath MC, Parker HJ, Cook ME, Hess JE, Narum SR, Lamanna F, Kaessmann H, Timoshevskiy VA, Waterbury CKM, Saraceno C, Wiedemann LM, Robb SMC, Baker C, Eichler EE, Hockman D, Sauka-Spengler T, Yandell M, Krumlauf R, Elgar G, Amemiya CT (2018) The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat Genet 50:270–277CrossRefGoogle Scholar
  79. Sutoh Y, Kondo M, Ohta Y, Ota T, Tomaru U, Flajnik MF, Kasahara M (2012) Comparative genomic analysis of the proteasome β5t subunit gene: implications for the origin and evolution of thymoproteasomes. Immunogenetics 64:49–58CrossRefGoogle Scholar
  80. Takahama Y, Takada K, Murata S, Tanaka K (2012) β5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Curr Opin Immunol 24:92–98CrossRefGoogle Scholar
  81. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  82. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36CrossRefGoogle Scholar
  83. Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-γ-inducible proteasome activator PA28. Immunol Rev 163:161–176CrossRefGoogle Scholar
  84. Tomaru U, Ishizu A, Murata S, Miyatake Y, Suzuki S, Takahashi S, Kazamaki T, Ohara J, Baba T, Iwasaki S, Fugo K, Otsuka N, Tanaka K, Kasahara M (2009) Exclusive expression of proteasome subunit β5t in the human thymic cortex. Blood 113:5186–5191CrossRefGoogle Scholar
  85. Tsukamoto K, Miura F, Fujito NT, Yoshizaki G, Nonaka M (2012) Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Mol Biol Evol 29:3071–3079CrossRefGoogle Scholar
  86. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002) The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure 10:609–618CrossRefGoogle Scholar
  87. Walker BA, Hunt LG, Sowa AK, Skjodt K, Gobel TW, Lehner PJ, Kaufman J (2011) The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci U S A 108:8396–8401CrossRefGoogle Scholar
  88. Wilk S, Chen WE, Magnusson RP (2000) Properties of the nuclear proteasome activator PA28γ (REGγ). Arch Biochem Biophys 383:265–271CrossRefGoogle Scholar
  89. Xing Y, Jameson SC, Hogquist KA (2013) Thymoproteasome subunit-β5T generates peptide-MHC complexes specialized for positive selection. Proc Natl Acad Sci U S A 110:6979–6984CrossRefGoogle Scholar
  90. Yewdell JW (2005) Immunoproteasomes: regulating the regulator. Proc Natl Acad Sci U S A 102:9089–9090CrossRefGoogle Scholar
  91. Zhang Z, Krutchinsky A, Endicott S, Realini C, Rechsteiner M, Standing KG (1999) Proteasome activator 11S REG or PA28: recombinant REGα/REGβ hetero-oligomers are heptamers. Biochemistry 38:5651–5658CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
  2. 2.Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations