Llama peripheral B-cell populations producing conventional and heavy chain-only IgG subtypes are phenotypically indistinguishable but immunogenetically distinct

  • Kevin A. HenryEmail author
  • Henk van Faassen
  • Doreen Harcus
  • Anne Marcil
  • Jennifer J. Hill
  • Serge Muyldermans
  • C. Roger MacKenzie
Original Article


Camelid ungulates produce homodimeric heavy chain-only antibodies (HCAbs) in addition to conventional antibodies consisting of paired heavy and light chains. In the llama, HCAbs are made up by at least two subclasses (long-hinge IgG2b and short-hinge IgG2c HCAbs vs. conventional heterotetrameric IgG1s). Here, we generated murine monoclonal antibodies (mAbs) specific for the hinge-CH2 boundary of llama IgG2b (mAb 1C10) and the Fc of llama IgG2c HCAbs (mAb 5E4). Flow cytometric analysis of llama peripheral blood lymphocytes revealed that IgG1+, IgG2b+ and IgG2c+ B cells could be distinguished using mAbs 1C10/5E4 but had equivalent expression of three other cell-surface markers. MiSeq sequencing of the peripheral B cell repertoires of three llamas showed that (i) IgG2b and IgG2c HCAbs were present in similar proportions in the repertoire, (ii) a subset of IgG2b and IgG2c HCAbs, but not IgG1s, entirely lacked a hinge exon and showed direct VHH-CH2 splicing; these “hingeless” HCAbs were clonally expanded, somatically mutated and derived from hinged HCAb precursors, (iii) substantial repertoire overlap existed between IgG subclasses, especially between IgG2b and IgG2c HCAbs, (iv) the complementarity-determining region (CDR)-H3 length distributions of IgG2b and IgG2c HCAbs were broader and biased towards longer lengths compared with IgG1s due to increased N-nucleotide addition, (v) IgG2b and IgG2c HCAbs used a more restricted set of IGHV genes compared with IgG1s, and (vi) IgG2b and IgG2c HCAbs had elevated somatic mutations rates of both CDRs and framework regions (FRs) compared with IgG1s, especially of CDR-H1 and FR3. The distinct molecular features of llama IgG1, IgG2b and IgG2c antibodies imply that these subclasses may have divergent immunological functions and suggest that specific mechanisms operate to diversify HCAb repertoires in the absence of a light chain.


Heavy chain-only antibody Single-domain antibody VHLlama Immunogenetics Next-generation DNA sequencing 



We gratefully acknowledge the excellent technical assistance of Christine Gadoury and Mike Lowden. We thank Tammy-Lynn Tremblay for preparing LC-MS samples.

Funding information

This work was funded by the National Research Council Canada.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

251_2018_1102_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1269 kb)


  1. Achour I, Cavelier P, Tichit M, Bouchier C, Lafaye P, Rougeon F (2008) Tetrameric and homodimeric camelid IgGs originate from the same IgH locus. J Immunol 181:2001–2009CrossRefGoogle Scholar
  2. Alamyar E, Duroux P, Lefranc MP, Giudicelli V (2012) IMGT(®) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol Biol 882:569–604CrossRefGoogle Scholar
  3. Baral TN, MacKenzie R, Arbabi Ghahroudi M (2013) Single-domain antibodies and their utility. Curr Protoc Immunol 103:Unit 2:17Google Scholar
  4. Bodenhofer U, Bonatesta E, Horejs-Kainrath C, Hochreiter S (2015) msa: an R package for multiple sequence alignment. Bioinformatics 31:3997–3999Google Scholar
  5. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120CrossRefGoogle Scholar
  6. Brooks CL, Rossotti MA, Henry KA (2018) Immunological functions and evolutionary emergence of heavy-chain antibodies. Trends Immunol 39:956–960CrossRefGoogle Scholar
  7. Conrath KE, Wernery U, Muyldermans S, Nguyen VK (2003) Emergence and evolution of functional heavy-chain antibodies in Camelidae. Dev Comp Immunol 27:87–103CrossRefGoogle Scholar
  8. Cox AD, St Michael F, Aubry A, Cairns CM, Strong PC, Hayes AC, Logan SM (2013) Investigating the candidacy of a lipoteichoic acid-based glycoconjugate as a vaccine to combat Clostridium difficile infection. Glycoconj J 30:843–855CrossRefGoogle Scholar
  9. Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA (2005) Application of monoclonal antibodies in functional and comparative investigations of heavy-chain immunoglobulins in new world camelids. Clin Diagn Lab Immunol 12:380–386Google Scholar
  10. de Jong BG, H IJ, Marques L, van der Burg M, van Dongen JJ, Loos BG, van Zelm MC (2017) Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. Immunol Cell Biol 95:744–752CrossRefGoogle Scholar
  11. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, Muyldermans S (2010) A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol 184:5696–5704CrossRefGoogle Scholar
  12. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30:E9–E99Google Scholar
  13. Feige MJ, Grawert MA, Marcinowski M, Hennig J, Behnke J, Auslander D, Herold EM, Peschek J, Castro CD, Flajnik M, Hendershot LM, Sattler M, Groll M, Buchner J (2014) The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proc Natl Acad Sci U S A 111:8155–8160CrossRefGoogle Scholar
  14. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374:168–173CrossRefGoogle Scholar
  15. Griffin LM, Snowden JR, Lawson AD, Wernery U, Kinne J, Baker TS (2014) Analysis of heavy and light chain sequences of conventional camelid antibodies from Camelus dromedarius and Camelus bactrianus species. J Immunol Methods 405:35–46CrossRefGoogle Scholar
  16. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448CrossRefGoogle Scholar
  17. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LG, de Geus B (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590CrossRefGoogle Scholar
  18. Henry KA (2018) Next-generation DNA sequencing of VH/VL repertoires: a primer and guide to applications in single-domain antibody discovery. Methods Mol Biol 1701:425–446CrossRefGoogle Scholar
  19. Henry KA, Hussack G, Collins C, Zwaagstra JC, Tanha J, MacKenzie CR (2016a) Isolation of TGF-β-neutralizing single-domain antibodies of predetermined epitope specificity using next-generation DNA sequencing. Protein Eng Des Sel 29:439–443CrossRefGoogle Scholar
  20. Henry KA, MacKenzie CR (2018) Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs 10:815–826CrossRefGoogle Scholar
  21. Henry KA, Sulea T, van Faassen H, Hussack G, Purisima EO, MacKenzie CR, Arbabi-Ghahroudi M (2016b) A rational engineering strategy for designing protein A-binding camelid single-domain antibodies. PLoS One 11:e0163113CrossRefGoogle Scholar
  22. Henry KA, Tanha J, Hussack G (2015) Identification of cross-reactive single-domain antibodies against serum albumin using next-generation DNA sequencing. Protein Eng Des Sel 28:379–383CrossRefGoogle Scholar
  23. Holzlohner P, Butze M, Maier N, Hebel N, Schliebs E, Micheel B, Funer J, Heidicke G, Hanack K (2018) Generation of murine monoclonal antibodies with specificity against conventional camelid IgG1 and heavy-chain only IgG2/3. Vet Immunol Immunopathol 197:1–6CrossRefGoogle Scholar
  24. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de Jonge N, Roovers RC, Cambillau C, Spinelli S, Del-Favero J, Verrips T, de Haard HJ, Achour I (2015) Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. MAbs 7:693–706CrossRefGoogle Scholar
  25. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645CrossRefGoogle Scholar
  26. Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17:3512–3520CrossRefGoogle Scholar
  27. Li X, Duan X, Yang K, Zhang W, Zhang C, Fu L, Ren Z, Wang C, Wu J, Lu R, Ye Y, He M, Nie C, Yang N, Wang J, Yang H, Liu X, Tan W (2016) Comparative analysis of immune repertoires between Bactrian camel's conventional and heavy-chain antibodies. PLoS One 11:e0161801CrossRefGoogle Scholar
  28. Maass DR, Sepulveda J, Pernthaner A, Shoemaker CB (2007) Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs). J Immunol Methods 324:13–25CrossRefGoogle Scholar
  29. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963CrossRefGoogle Scholar
  30. Manceur AP, Zou W, Marcil A, Paquet E, Gadoury C, Jaentschke B, Li X, Petiot E, Durocher Y, Baardsnes J, Rosa-Calatrava M, Ansorge S, Kamen AA (2017) Generation of monoclonal pan-hemagglutinin antibodies for the quantification of multiple strains of influenza. PLoS One 12:e0180314CrossRefGoogle Scholar
  31. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797CrossRefGoogle Scholar
  32. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R (1994) Sequence and structure of VH domain from naturally occurring camel heavy chain immunoglobulins lacking light chains. Protein Eng 7:1129–1135CrossRefGoogle Scholar
  33. Nguyen VK, Hamers R, Wyns L, Muyldermans S (1999) Loss of splice consensus signal is responsible for the removal of the entire CH1 domain of the functional camel IgG2a heavy-chain antibodies. Mol Immunol 36:515–524CrossRefGoogle Scholar
  34. Nguyen VK, Hamers R, Wyns L, Muyldermans S (2000) Camel heavy-chain antibodies: diverse germline V H H and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19:921–930CrossRefGoogle Scholar
  35. Nguyen VK, Muyldermans S, Hamers R (1998) The specific variable domain of camel heavy-chain antibodies is encoded in the germline. J Mol Biol 275:413–418CrossRefGoogle Scholar
  36. Nguyen VK, Su C, Muyldermans S, van der Loo W (2002) Heavy-chain antibodies in Camelidae; a case of evolutionary innovation. Immunogenetics 54:39–47CrossRefGoogle Scholar
  37. Pluciennik A, Stolarczyk M, Bzowka M, Raczynska A, Magdziarz T, Gora A (2018) BALCONY: an R package for MSA and functional compartments of protein variability analysis. BMC Bioinformatics 19:300CrossRefGoogle Scholar
  38. Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 47:234–245CrossRefGoogle Scholar
  39. Saccodossi N, De Simone EA, Leoni J (2012) Structural analysis of effector functions related motifs, complement activation and hemagglutinating activities in Lama glama heavy chain antibodies. Vet Immunol Immunopathol 145:323–331CrossRefGoogle Scholar
  40. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864CrossRefGoogle Scholar
  41. Sun Y, Gadoury C, Hirakawa MP, Bennett RJ, Harcus D, Marcil A, Whiteway M (2016) Deletion of a Yci1 domain protein of Candida albicans allows homothallic mating in MTL heterozygous cells. MBio 7:e00465–e00416CrossRefGoogle Scholar
  42. van der Linden R, de Geus B, Stok W, Bos W, van Wassenaar D, Verrips T, Frenken L (2000) Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods 240:185–195CrossRefGoogle Scholar
  43. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S (1997) Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol 34:1121–1131CrossRefGoogle Scholar
  44. Woolven BP, Frenken LG, van der Logt P, Nicholls PJ (1999) The structure of the llama heavy chain constant genes reveals a mechanism for heavy-chain antibody formation. Immunogenetics 50:98–101CrossRefGoogle Scholar
  45. Zou X, Osborn MJ, Bolland DJ, Smith JA, Corcos D, Hamon M, Oxley D, Hutchings A, Morgan G, Santos F, Kilshaw PJ, Taussig MJ, Corcoran AE, Bruggemann M (2007) Heavy chain-only antibodies are spontaneously produced in light chain-deficient mice. J Exp Med 204:3271–3283CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kevin A. Henry
    • 1
    Email author
  • Henk van Faassen
    • 1
  • Doreen Harcus
    • 2
  • Anne Marcil
    • 2
  • Jennifer J. Hill
    • 1
  • Serge Muyldermans
    • 3
  • C. Roger MacKenzie
    • 1
    • 4
  1. 1.Human Health Therapeutics Research CentreNational Research Council CanadaOttawaCanada
  2. 2.Human Health Therapeutics Research CentreNational Research Council CanadaMontréalCanada
  3. 3.Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
  4. 4.School of Environmental SciencesUniversity of GuelphGuelphCanada

Personalised recommendations