European Biophysics Journal

, Volume 48, Issue 7, pp 659–671 | Cite as

Impact of semen-derived amyloid (SEVI) on sperm viability and motility: its implication in male reproductive fitness

  • Vijay Kumar
  • Pradeep G. Kumar
  • Jay Kant YadavEmail author
Original Article


Human semen contains a large number of macromolecules, including proteins/enzymes and carbohydrates, regulating and protecting sperm cells. Proteomic analysis of human seminal fluid led to the discovery of semen amyloids derived from short peptide fragments of the proteins prostatic acid phosphatase (PAP) and semenogelin (SG) which are known to play a crucial role in enhancing HIV infection. However, the relevance of their existence in human semen and role in maintaining sperm behavior remains unclear. Distinct physiological, biochemical, and biophysical attributes might cause these amyloids to influence sperm behavior positively or negatively, affecting fertilization or other reproductive processes. We assessed the direct effect of amyloids derived from a PAP248–286 fragment, on sperm motility and viability, which are crucial parameters for assessment of sperm quality in semen. Co-incubation of human sperm with PAP248–286 amyloids at normal physiological concentrations formed in buffer led to significant reduction in sperm viability, though approximately a 10× higher concentration was needed to show a similar effect with amyloid formed in seminal fluid. Both forms of PAP248–286 amyloid also had a significant impact on sperm motility at physiological levels, in agreement with a previous report. Our study suggests that PAP248–286 amyloids can directly influence sperm motility and viability in a concentration-dependent manner. We hypothesise that the direct toxic effect of PAP248–286 amyloid is normally mitigated by other seminal fluid ingredients, but that in pathological conditions, where PAP248–286 concentrations are elevated and it plays a role in determining sperm health and viability, with relevance for male fertility as well as sterility.


Semen-derived amyloids PAP248–286 SEVI Male sterility 



Prostatic acid phosphatase




Semen-derived enhancer of viral infection


Seminal plasma


Dulbecco’s phosphate buffer saline


Revolutions per minutes


Congo red


Transmission electron microscope


Sperm motility index


Propidium iodide


Fluorescence-activated cell sorting



We are thankful to the technical staff of central instrument facility at RGCB, and KJK hospital Thiruvananthapuram, Kerala, India for their unconditional support. Mr. Vijay Kumar is thankful to the lab members of molecular reproduction at RGCB for their help during this project. Mr. Vijay Kumar acknowledges University Grants Commission, India and Social Justice and Empowerment Department, Govt. of India for RGN fellowship.


This study was partially supported by Department of Science and Technology, Government of India (Grant number SB/YS/LS-130/2013).

Compliance with ethical standards

Conflict of interest

The authors do not have any conflict of interest to declare.


  1. Aagaard JE, Yi X, MacCoss MJ, Swanson WJ (2006) Rapidly evolving zona pellucida domain proteins are a major component of the vitelline envelope of abalone eggs. Proc Natl Acad Sci 103(46):17302–17307CrossRefGoogle Scholar
  2. Amaral A, Lourenço B, Marques M, Ramalho-Santos J (2013) Mitochondria functionality and sperm quality. Reproduction 146(5):R163–R174CrossRefGoogle Scholar
  3. Barros C, Vigil P, Herrera E, Arguello B, Walker R (1984) Selection of morphologically abnormal sperm by human cervical mucus. Arch Androl 12:95–107Google Scholar
  4. Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, Amon A (2015) Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell 163(2):406–418CrossRefGoogle Scholar
  5. Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, Alberti S, Drechsel D, Hyman AA, Mitchison TJ (2016) Amyloid-like self-assembly of a cellular compartment. Cell 166(3):637–650CrossRefGoogle Scholar
  6. Breydo L, Uversky VN (2015) Structural, morphological, and functional diversity of amyloid oligomers. FEBS Lett 589(19 Part A):2640–2648CrossRefGoogle Scholar
  7. Cardullo RA, Baltz JM (1991) Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cytoskeleton 19(3):180–188CrossRefGoogle Scholar
  8. Castellano LM, Shorter J (2012) The surprising role of amyloid fibrils in HIV infection. Biology 1(1):58–80CrossRefGoogle Scholar
  9. Castellano LM, Bart SM, Holmes VM, Weissman D, Shorter J (2015) Repurposing Hsp104 to antagonize seminal amyloid and counter HIV infection. Chem Biol 22(8):1074–1086CrossRefGoogle Scholar
  10. Chau KM, Cornwall GA (2011) Reduced fertility in vitro in mice lacking the cystatin CRES (cystatin-related epididymal spermatogenic): rescue by exposure of spermatozoa to dibutyryl cAMP and isobutylmethylxanthine. Biol Reprod 84(1):140–152CrossRefGoogle Scholar
  11. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366CrossRefGoogle Scholar
  12. Di Scala C, Yahi N, Boutemeur S, Flores A, Rodriguez L, Chahinian H, Fantini J (2016) Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein. Sci Rep 6:28781CrossRefGoogle Scholar
  13. Dosch R, Wagner DS, Mintzer KA, Runke G, Wiemelt AP, Mullins MC (2004) Maternal control of vertebrate development before the midblastula transition: mutants from the zebrafish I. Dev. Cell 6(6):771–780CrossRefGoogle Scholar
  14. Easterhoff D (2013) Characterization of amyloid fibrils in seminal fluid and their interaction with pathogens. University of Rochester, New YorkGoogle Scholar
  15. Eisenberg D, Jucker M (2012) The amyloid state of proteins in human diseases. Cell 148(6):1188–1203CrossRefGoogle Scholar
  16. Elia J, Imbrogno N, Delfino M, Mazzilli R, Rossi T, Mazzilli F (2010) The importance of the sperm motility classes-future directions. Open Androl J 2:42–43Google Scholar
  17. Elias AK (2015) The functional studies of amyloid fibrils and their toxicity. Doctoral dissertationGoogle Scholar
  18. Eliasson R (1982) Biochemical analysis of human semen. Int J Androl 5(s5):109–119CrossRefGoogle Scholar
  19. Fändrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion 3(2):89–93CrossRefGoogle Scholar
  20. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32(5):217–224CrossRefGoogle Scholar
  21. French KC, Makhatadze GI (2012) Core sequence of PAPf39 amyloid fibrils and mechanism of pH-dependent fibril formation: the role of monomer conformation. Biochemistry 51(51):10127–10136CrossRefGoogle Scholar
  22. Gaharwar B, Gour S, Kaushik V, Gupta N, Kumar V, Hause G, Yadav JK (2015) Assessment of the effect of macromolecular crowding on aggregation behaviour of a model amyloidogenic peptide. Protein Pept Lett 22(1):87–93CrossRefGoogle Scholar
  23. Gill SC, Von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182(2):319–326CrossRefGoogle Scholar
  24. Glabe CG (2008) Structural classification of toxic amyloid oligomers. J Biol Chem 283(44):29639–29643CrossRefGoogle Scholar
  25. Greve JM, Wassarman PM (1985) Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat. J Mol Biol 181(2):253–264CrossRefGoogle Scholar
  26. Gunia S, Koch S, May M, Dietel M, Erbersdobler A (2009) Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies. Virchows Arch 454(5):573–579CrossRefGoogle Scholar
  27. Guyonnet B, Egge N, Cornwall GA (2014) Functional amyloids in the mouse sperm acrosome. Mol Cell Biol 34(14):2624–2634CrossRefGoogle Scholar
  28. Hammer ND, Wang X, McGuffie BA, Chapman MR (2008) Amyloids: friend or foe? J Alzheimers Dis 13(4):407–419CrossRefGoogle Scholar
  29. Hartjen P, Frerk S, Hauber I, Matzat V, Thomssen A, Holstermann B, Hohenberg H, Schulze W, Schulze Zur Wiesch J, van Lunzen J (2012a) Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res Ther 9(1):2CrossRefGoogle Scholar
  30. Hewetson A, Do HQ, Myers C, Muthusubramanian A, Sutton RB, Wylie BJ, Cornwall GA (2017) Functional amyloids in reproduction. Biomolecules 7(3):46CrossRefGoogle Scholar
  31. Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479(3):141–145CrossRefGoogle Scholar
  32. Johansson J, Olson L, Andersson J, Johansson G, Winblad B (2016) Amyloid: a multifaceted player in human health and disease. J Intern Med 280(2):136–138CrossRefGoogle Scholar
  33. Juyena NS, Stelletta C (2012) Seminal plasma: an essential attribute to spermatozoa. J Androl 33(4):536–551CrossRefGoogle Scholar
  34. Kim KA, Yolamanova M, Zirafi O, Roan NR, Staendker L, Forssmann WG, Burgener A, Dejucq-Rainsford N, Hahn BH, Shaw GM, Greene WC, Kirchhoff F, Munch J (2010) Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI. Retrovirology 7:55CrossRefGoogle Scholar
  35. Klunk WE, Pettegrew J, Abraham DJ (1989) Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J Histochem Cytochem 37(8):1273–1281CrossRefGoogle Scholar
  36. Kordan W, Fraser L, Wysocki P, Strzeżek R, Lecewicz M, Mogielnicka-Brzozowska M, Dziekońska A, Soliwoda D, Koziorowska-Gilun M (2013) Semen quality assessments and their significance in reproductive technology. Pol J Vet Sci 16(4):823–833CrossRefGoogle Scholar
  37. Last NB, Rhoades E, Miranker AD (2011) Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity. Proc Natl Acad Sci 108(23):9460–9465CrossRefGoogle Scholar
  38. Litscher ES, Janssen WG, Darie CC, Wassarman PM (2008) Purified mouse egg zona pellucida glycoproteins polymerize into homomeric fibrils under non-denaturing conditions. J Cell Physiol 214(1):153–157CrossRefGoogle Scholar
  39. Louros NN, Petronikolou N, Karamanos T, Cordopatis P, Iconomidou VA, Hamodrakas SJ (2014) Structural studies of “aggregation-prone” peptide-analogues of teleostean egg chorion ZPB proteins. J Pept Sci 102(6):427–436CrossRefGoogle Scholar
  40. Macleod J, Wang Y (1979) Male fertility potential in terms of semen quality: a review of the past a study of the present. Fertil Steril 31(2):103–116CrossRefGoogle Scholar
  41. Malm J, Sonesson A, Hellman J, Bjartell A, Frohm B, Hillarp A (2008) The pentraxin serum amyloid P component is found in the male genital tract and attached to spermatozoa. Int J Androl 31(5):508–517CrossRefGoogle Scholar
  42. Martellini JA, Cole AL, Svoboda P, Stuchlik O, Chen L-M, Chai KX, Gangrade BK, Sørensen OE, Pohl J, Cole AM (2011) HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma. PLoS ONE 6(1):e16285CrossRefGoogle Scholar
  43. Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Gimenez-Gallego G, Sanchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131(6):1059–1071CrossRefGoogle Scholar
  44. Nanga RP, Brender JR, Vivekanandan S, Popovych N, Ramamoorthy A (2009) NMR structure in a membrane environment reveals putative amyloidogenic regions of the SEVI precursor peptide PAP(248–286). J Am Chem Soc 131(49):17972–17979CrossRefGoogle Scholar
  45. Navarro S, Ventura S (2014) Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli. Biotechnol J 9(10):1259–1266CrossRefGoogle Scholar
  46. Owen DH, Katz DF (2005) A review of the physical and chemical properties of human semen and the formulation of a semen simulant. J Androl 26(4):459–469CrossRefGoogle Scholar
  47. Podrabsky JE, Carpenter JF, Hand SC (2001) Survival of water stress in annual fish embryos: dehydration avoidance and egg envelope amyloid fibers. Am J Physiol Regul Integr Comp Physiol 280(1):R123–R131CrossRefGoogle Scholar
  48. Poiani A (2006) Complexity of seminal fluid: a review. Behav Ecol Sociobiol 60(3):289–310CrossRefGoogle Scholar
  49. Roan NR, Greene WC (2007) A seminal finding for understanding HIV transmission. Cell 131(6):1044–1046CrossRefGoogle Scholar
  50. Roan NR, Münch J, Arhel N, Mothes W, Neidleman J, Kobayashi A, Smith-McCune K, Kirchhoff F, Greene WC (2009) The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection. J Virol 83(1):73–80CrossRefGoogle Scholar
  51. Roan NR, Sowinski S, Münch J, Kirchhoff F, Greene WC (2010) Aminoquinoline surfen inhibits the action of SEVI (semen-derived enhancer of viral infection). J Biol Chem 285(3):1861–1869CrossRefGoogle Scholar
  52. Roan NR, Muller JA, Liu H, Chu S, Arnold F, Sturzel CM, Walther P, Dong M, Witkowska HE, Kirchhoff F, Munch J, Greene WC (2011) Peptides released by physiological cleavage of semen coagulum proteins form amyloids that enhance HIV infection. Cell Host Microbe 10(6):541–550CrossRefGoogle Scholar
  53. Roan NR, Liu H, Usmani SM, Neidleman J, Muller JA, Avila-Herrera A, Gawanbacht A, Zirafi O, Chu S, Dong M, Kumar ST, Smith JF, Pollard KS, Fandrich M, Kirchhoff F, Munch J, Witkowska HE, Greene WC (2014) Liquefaction of semen generates and later degrades a conserved semenogelin peptide that enhances HIV infection. J Virol 88(13):7221–7234CrossRefGoogle Scholar
  54. Roan NR, Sandi-Monroy N, Kohgadai N, Usmani SM, Hamil KG, Neidleman J, Montano M, Standker L, Rocker A, Cavrois M, Rosen J, Marson K, Smith JF, Pilcher CD, Gagsteiger F, Sakk O, O'Rand M, Lishko PV, Kirchhoff F, Munch J, Greene WC (2017) Semen amyloids participate in spermatozoa selection and clearance. eLife 6:e24888CrossRefGoogle Scholar
  55. Roberts RG (2016) Good amyloid, bad amyloid—what’s the difference? PLoS Biol 14(1):e1002362CrossRefGoogle Scholar
  56. Röcker A, Roan NR, Yadav JK, Fändrich M, Münch J (2018) Structure, function and antagonism of semen amyloids. Chem Commun 54(55):7557–7569CrossRefGoogle Scholar
  57. Ruggiu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, Dorin J, Cooke HJ (1997) The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 389(6646):73CrossRefGoogle Scholar
  58. Sciacca MF, Kotler SA, Brender JR, Chen J, Lee D-K, Ramamoorthy A (2012) Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation. Biophys J 103(4):702–710CrossRefGoogle Scholar
  59. Sheftic SR, Snell JM, Jha S, Alexandrescu AT (2012) Inhibition of semen-derived enhancer of virus infection (SEVI) fibrillogenesis by zinc and copper. Eur Biophys J 41(9):695–704CrossRefGoogle Scholar
  60. Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, Patton WF (2011) Novel cell-and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 60(3):173–185CrossRefGoogle Scholar
  61. Southern PJ (2013) Missing out on the biology of heterosexual HIV-1 transmission. Trends Microbiol 21(5):245–252CrossRefGoogle Scholar
  62. Suarez S, Pacey A (2006) Sperm transport in the female reproductive tract. Hum Reprod Update 12(1):23–37CrossRefGoogle Scholar
  63. Ta HP, Berthelot K, Coulary-Salin B, Castano S, Desbat B, Bonnafous P, Lambert O, Alves I, Cullin C, Lecomte S (2012) A yeast toxic mutant of HET-s amyloid disrupts membrane integrity. BBA Biomembranes 1818(9):2325–2334CrossRefGoogle Scholar
  64. Tan S, Lu L, Li L, Liu J, Oksov Y, Lu H, Jiang S, Liu S (2013) Polyanionic candidate microbicides accelerate the formation of semen-derived amyloid fibrils to enhance HIV-1 infection. PLoS ONE 8(3):e59777CrossRefGoogle Scholar
  65. Tanaka M, Komi Y (2015) Layers of structure and function in protein aggregation. Nat Chem Biol 11(6):373CrossRefGoogle Scholar
  66. Tasken K, Angelsen A, Svindland A, Eide T, Berge V, Wahlquist R, Karlsen S (2005) Markers for diagnosis, prediction and prognosis of prostate cancer. Tidsskrift for den Norske laegeforening: tidsskrift for praktisk medicin, ny raekke 125(23):3279–3282Google Scholar
  67. Usmani SM, Zirafi O, Muller JA, Sandi-Monroy NL, Yadav JK, Meier C, Weil T, Roan NR, Greene WC, Walther P, Nilsson KP, Hammarstrom P, Wetzel R, Pilcher CD, Gagsteiger F, Fandrich M, Kirchhoff F, Munch J (2014) Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun 5:3508CrossRefGoogle Scholar
  68. Vaubourdolle M, Clavel J, Gonzales J, Galli A (1985) Evaluation of acid phosphatase isoenzymes in seminal fluid from normozoospermic, oligozoospermic, azoospermic and asthenoteratozoospermic men. Andrologia 17(6):598–604CrossRefGoogle Scholar
  69. Walsh P, Vanderlee G, Yau J, Campeau J, Sim VL, Yip CM, Sharpe S (2014) The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prion protein (106–126) is dependent on bilayer composition. J Biol Chem 289(15):10419–10430CrossRefGoogle Scholar
  70. Wang C, Swerdloff RS (2014) Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril 102(6):1502–1507CrossRefGoogle Scholar
  71. Whelly S, Johnson S, Powell J, Borchardt C, Hastert MC, Cornwall GA (2012) Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS ONE 7(5):e36394CrossRefGoogle Scholar
  72. Whelly S, Serobian G, Borchardt C, Powell J, Johnson S, Hakansson K, Lindstrom V, Abrahamson M, Grubb A, Cornwall GA (2014) Fertility defects in mice expressing the L68Q variant of human cystatin CA role for amyloid in male infertility. J Biol Chem 289(11):7718–7729CrossRefGoogle Scholar
  73. Whelly S, Muthusubramanian A, Powell J, Johnson S, Hastert MC, Cornwall GA (2016) Cystatin-related epididymal spermatogenic subgroup members are part of an amyloid matrix and associated with extracellular vesicles in the mouse epididymal lumen. MHR Basic Sci Reprod Med 22(11):729–744CrossRefGoogle Scholar
  74. Ye Z, French KC, Popova LA, Lednev IK, Lopez MM, Makhatadze GI (2009) Mechanism of fibril formation by a 39-residue peptide (PAPf39) from human prostatic acidic phosphatase. Biochemistry 48(48):11582–11591CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyCentral University of RajasthanAjmerIndia
  2. 2.Molecular Reproduction DivisionRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia

Personalised recommendations