European Biophysics Journal

, Volume 48, Issue 7, pp 645–657 | Cite as

Biophysical characterization and molecular phylogeny of human KIN protein

  • José Renato Pattaro Júnior
  • Ícaro Putinhon Caruso
  • Quirino Alves de Lima Neto
  • Francisco Ferreira Duarte Junior
  • Fabiana dos Santos Rando
  • Edileusa Cristina Marques Gerhardt
  • Maria Aparecida Fernandez
  • Flávio Augusto Vicente SeixasEmail author
Original Article


The DNA/RNA-binding KIN protein was discovered in 1989, and since then, it has been found to participate in several processes, e.g., as a transcription factor in bacteria, yeasts, and plants, in immunoglobulin isotype switching, and in the repair and resolution of double-strand breaks caused by ionizing radiation. However, the complete three-dimensional structure and biophysical properties of KIN remain important information for clarifying its function and to help elucidate mechanisms associated with it not yet completely understood. The present study provides data on phylogenetic analyses of the different domains, as well as a biophysical characterization of the human KIN protein (HSAKIN) using bioinformatics techniques, circular dichroism spectroscopy, and differential scanning calorimetry to estimate the composition of secondary structure elements; further studies were performed to determine the biophysical parameters ΔHm and Tm. The phylogenetic analysis indicated that the zinc-finger and winged helix domains are highly conserved in KIN, with mean identity of 90.37% and 65.36%, respectively. The KOW motif was conserved only among the higher eukaryotes, indicating that this motif emerged later on the evolutionary timescale. HSAKIN has more than 50% of its secondary structure composed by random coil and β-turns. The highest values of ΔHm and Tm were found at pH 7.4 suggesting a stable structure at physiological conditions. The characteristics found for HSAKIN are primarily due to its relatively low composition of α-helices and β-strands, making up less than half of the protein structure.


KIN (Kin17) protein Phylogeny Circular dichroism DSC analysis Tumor marker 



This work was supported by Fundação Araucária (Grant Numbers 147/14 and 40/16), Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES, code 001), and the National Council for Scientific and Technological Development—Brazil (CNPq Grant Number 305960/2015-6). Dr. Fátima Pereira de Souza and Dr. Marcelo Andrés Fossey are gratefully acknowledged for the helpful discussion, and the authors thank IBILCE/UNESP and UFPR for the use of facilities.

Supplementary material

249_2019_1390_MOESM1_ESM.docx (5.9 mb)
Supplementary file1 (DOCX 6006 kb)


  1. Angulo JF, Moreau PL, Maunoury R, Laporte J, Hill AM, Bertolotti R, Devoret R (1989) KIN, a mammalian nuclear protein immunologically related to E. coli RecA protein. Mutat Res 217:123–134CrossRefGoogle Scholar
  2. Angulo JF, Rouer E, Benarous R, Devoret R (1991) Identification of a mouse cDNA fragment whose expressed polypeptide reacts with anti-recA antibodies. Biochimie 73:251–256CrossRefGoogle Scholar
  3. Araneda S, Angulo J, Touret M, Sallanon-Moulin M, Souchier C, Jouvet M (1997) Preferential expression of kin, a nuclear protein binding to curved DNA, in the neurons of the adult rat. Brain Res 762:103–113CrossRefGoogle Scholar
  4. Biard DS, Saintigny Y, Maratrat M, Paris F, Martin M, Angulo JF (1997) Enhanced expression of the Kin17 protein immediately after low doses of ionizing radiation. Radiat Res 147:442–450CrossRefGoogle Scholar
  5. Biard DS, Miccoli L, Despras E, Frobert Y, Creminon C, Angulo JF (2002) Ionizing radiation triggers chromatin-bound kin17 complex formation in human cells. J Biol Chem 277:19156–19165CrossRefGoogle Scholar
  6. Biard DS, Miccoli L, Despras E, Harper F, Pichard E, Creminon C, Angulo JF (2003) Participation of kin17 protein in replication factories and in other DNA transactions mediated by high molecular weight nuclear complexes. Mol Cancer Res 1:519–531Google Scholar
  7. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336CrossRefGoogle Scholar
  8. Cantor CR, Schimmel PR (1980) Biophysical chemistry. W. H Freeman, San FranciscoGoogle Scholar
  9. Carlier L, le Maire A, Braud S, Masson C, Gondry M, Zinn-Justin S, Guilhaudis L, Milazzo I, Davoust D, Gilquin B, Couprie J (2006) NMR assignment of region 51–160 of human KIN17, a DNA and RNA-binding protein. J Biomol NMR 36(Suppl 1):29CrossRefGoogle Scholar
  10. Carlier L, Couprie J, le Maire A, Guilhaudis L, Milazzo-Segalas I, Courcon M, Moutiez M, Gondry M, Davoust D, Gilquin B, Zinn-Justin S (2007) Solution structure of the region 51–160 of human KIN17 reveals an atypical winged helix domain. Protein Sci 16:2750–2755CrossRefGoogle Scholar
  11. Ceroni A, Passerini A, Vullo A, Frasconi P (2006) DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res 34:W177–181CrossRefGoogle Scholar
  12. Coordinators NR (2018) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 46:D8–D13CrossRefGoogle Scholar
  13. Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124:507–520CrossRefGoogle Scholar
  14. Del Sal G, Manfioletti G, Schneider C (1989) The CTAB-DNA precipitation method: a common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. Biotechniques 7:514–520Google Scholar
  15. Despras E, Miccoli L, Creminon C, Rouillard D, Angulo JF, Biard DS (2003) Depletion of KIN17, a human DNA replication protein, increases the radiosensitivity of RKO cells. Radiat Res 159:748–758CrossRefGoogle Scholar
  16. Dunker AK, Oldfield CJ (2015) Back to the future: nuclear magnetic resonance and bioinformatics studies on intrinsically disordered proteins. Adv Exp Med Biol 870:1–34CrossRefGoogle Scholar
  17. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. Febs J 272:5129–5148CrossRefGoogle Scholar
  18. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208CrossRefGoogle Scholar
  19. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  20. Garcia-Molina A, Xing S, Huijser P (2014a) The Arabidopsis KIN17 and its homolog KLP mediate different aspects of plant growth and development. Plant Signal Behav 9:e28634CrossRefGoogle Scholar
  21. Garcia-Molina A, Xing S, Huijser P (2014b) A conserved KIN17 curved DNA-binding domain protein assembles with SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiol 164:828–840CrossRefGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  23. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100CrossRefGoogle Scholar
  24. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35:307–312CrossRefGoogle Scholar
  25. Jones S, Thornton JM (2004) Searching for functional sites in protein structures. Curr Opin Chem Biol 8:3–7CrossRefGoogle Scholar
  26. Kannouche P, Pinon-Lataillade G, Mauffrey P, Faucher C, Biard DS, Angulo JF (1997) Overexpression of kin17 protein forms intranuclear foci in mammalian cells. Biochimie 79:599–606CrossRefGoogle Scholar
  27. Kannouche P, Mauffrey P, Pinon-Lataillade G, Mattei MG, Sarasin A, Daya-Grosjean L, Angulo JF (2000) Molecular cloning and characterization of the human KIN17 cDNA encoding a component of the UVC response that is conserved among metazoans. Carcinogenesis 21:1701–1710CrossRefGoogle Scholar
  28. Kay BK (2012) SH3 domains come of age. FEBS Lett 586:2606–2608CrossRefGoogle Scholar
  29. Kyrpides NC, Woese CR, Ouzounis CA (1996) KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem Sci 21:425–426CrossRefGoogle Scholar
  30. Le MX, Haddad D, Ling AK, Li C, So CC, Chopra A, Hu R, Angulo JF, Moffat J, Martin A (2016) Kin17 facilitates multiple double-strand break repair pathways that govern B cell class switching. Sci Rep 6:37215CrossRefGoogle Scholar
  31. le Maire A, Schiltz M, Braud S, Gondry M, Charbonnier JB, Zinn-Justin S, Stura E (2006) Crystallization and halide phasing of the C-terminal domain of human KIN17. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:245–248CrossRefGoogle Scholar
  32. le Maire A, Schiltz M, Stura EA, Pinon-Lataillade G, Couprie J, Moutiez M, Gondry M, Angulo JF, Zinn-Justin S (2006) A tandem of SH3-like domains participates in RNA binding in KIN17, a human protein activated in response to genotoxics. J Mol Biol 364:764–776CrossRefGoogle Scholar
  33. Masson C, Menaa F, Pinon-Lataillade G, Frobert Y, Chevillard S, Radicella JP, Sarasin A, Angulo JF (2003) Global genome repair is required to activate KIN17, a UVC-responsive gene involved in DNA replication. Proc Natl Acad Sci USA 100:616–621CrossRefGoogle Scholar
  34. Mazin A, Milot E, Devoret R, Chartrand P (1994a) KIN17, a mouse nuclear protein, binds to bent DNA fragments that are found at illegitimate recombination junctions in mammalian cells. Mol Gen Genet MGG 244:435–438CrossRefGoogle Scholar
  35. Mazin A, Timchenko T, Menissier-de Murcia J, Schreiber V, Angulo JF, de Murcia G, Devoret R (1994b) Kin17, a mouse nuclear zinc finger protein that binds preferentially to curved DNA. Nucleic Acids Res 22:4335–4341CrossRefGoogle Scholar
  36. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597–600CrossRefGoogle Scholar
  37. Miccoli L, Biard DS, Creminon C, Angulo JF (2002) Human kin17 protein directly interacts with the simian virus 40 large T antigen and inhibits DNA replication. Cancer Res 62:5425–5435Google Scholar
  38. Miccoli L, Frouin I, Novac O, Di Paola D, Harper F, Zannis-Hadjopoulos M, Maga G, Biard DS, Angulo JF (2005) The human stress-activated protein kin17 belongs to the multiprotein DNA replication complex and associates in vivo with mammalian replication origins. Mol Cell Biol 25:3814–3830CrossRefGoogle Scholar
  39. Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom 9(Suppl 1):S1CrossRefGoogle Scholar
  40. Olsson U, Wolf-Watz M (2010) Overlap between folding and functional energy landscapes for adenylate kinase conformational change. Nat Commun 1:111CrossRefGoogle Scholar
  41. Paiardini A, Bossa F, Pascarella S (2004) Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: the case of the fold-type I, pyridoxal-5ʹ-phosphate-dependent enzymes. Protein Sci 13:2992–3005CrossRefGoogle Scholar
  42. Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580:2041–2045CrossRefGoogle Scholar
  43. Pils B, Copley RR, Schultz J (2005) Variation in structural location and amino acid conservation of functional sites in protein domain families. BMC Bioinform 6:210CrossRefGoogle Scholar
  44. Pinon-Lataillade G, Masson C, Bernardino-Sgherri J, Henriot V, Mauffrey P, Frobert Y, Araneda S, Angulo JF (2004) KIN17 encodes an RNA-binding protein and is expressed during mouse spermatogenesis. J Cell Sci 117:3691–3702CrossRefGoogle Scholar
  45. Ramos AC, Gaspar VP, Kelmer SM, Sellani TA, Batista AG, De Lima Neto QA, Rodrigues EG, Fernandez MA (2015) The kin17 Protein in Murine Melanoma Cells. Int J Mol Sci 16:27912–27920CrossRefGoogle Scholar
  46. Riener CK, Kada G, Gruber HJ (2002) Quick measurement of protein sulfhydryls with Ellman's reagent and with 4,4ʹ-dithiodipyridine. Anal Bioanal Chem 373:266–276CrossRefGoogle Scholar
  47. Saksela K, Permi P (2012) SH3 domain ligand binding: What's the consensus and where's the specificity? FEBS Lett 586:2609–2614CrossRefGoogle Scholar
  48. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  49. Singh R, Valcarcel J (2005) Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 12:645–653CrossRefGoogle Scholar
  50. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260CrossRefGoogle Scholar
  51. Steiner T, Kaiser JT, Marinkovic S, Huber R, Wahl MC (2002) Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. Embo J 21:4641–4653CrossRefGoogle Scholar
  52. Timchenko T, Bailone A, Devoret R (1996) Btcd, a mouse protein that binds to curved DNA, can substitute in Escherichia coli for H-NS, a bacterial nucleoid protein. Embo J 15:3986–3992CrossRefGoogle Scholar
  53. Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354CrossRefGoogle Scholar
  54. UniProt Consortium T (2018) UniProt: the universal protein knowledgebase. Nucleic Acids Res 46:2699CrossRefGoogle Scholar
  55. Vogel C, Bashton M, Kerrison ND, Chothia C, Teichmann SA (2004) Structure, function and evolution of multidomain proteins. Curr Opin Struct Biol 14:208–216CrossRefGoogle Scholar
  56. Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6:1899–1916CrossRefGoogle Scholar
  57. Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216CrossRefGoogle Scholar
  58. Westermeier R, Naven T (2002) Part II: course manual, step 9: ingel digestion. In: Proteomics in practice: a laboratory manual of proteome analysis. Wiley-VCH, Weinheim, p 261CrossRefGoogle Scholar
  59. Wetzel R, Becker M, Behlke J, Billwitz H, Bohm S, Ebert B, Hamann H, Krumbiegel J, Lassmann G (1980) Temperature behaviour of human serum albumin. Eur J Biochem 104:469–478CrossRefGoogle Scholar
  60. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552Google Scholar
  61. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007a) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res 6:1917–1932CrossRefGoogle Scholar
  62. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007b) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6:1882–1898CrossRefGoogle Scholar
  63. Yang YL, Suen J, Brynildsen MP, Galbraith SJ, Liao JC (2005) Inferring yeast cell cycle regulators and interactions using transcription factor activities. BMC Genom 6:90CrossRefGoogle Scholar
  64. Zhang Y, Gao H, Gao X, Huang S, Wu K, Yu X, Yuan K, Zeng T (2017a) Elevated expression of Kin17 in cervical cancer and its association with cancer cell proliferation and invasion. Int J Gynecol Cancer 27:628–633CrossRefGoogle Scholar
  65. Zhang Y, Huang S, Gao H, Wu K, Ouyang X, Zhu Z, Yu X, Zeng T (2017b) Upregulation of KIN17 is associated with non-small cell lung cancer invasiveness. Oncol Lett 13:2274–2280CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  • José Renato Pattaro Júnior
    • 1
  • Ícaro Putinhon Caruso
    • 2
  • Quirino Alves de Lima Neto
    • 3
  • Francisco Ferreira Duarte Junior
    • 3
  • Fabiana dos Santos Rando
    • 4
  • Edileusa Cristina Marques Gerhardt
    • 5
  • Maria Aparecida Fernandez
    • 3
  • Flávio Augusto Vicente Seixas
    • 1
    Email author
  1. 1.Department of TechnologyUniversidade Estadual de Maringá-UEMUmuaramaBrazil
  2. 2.Department of Physics, Instituto de BiociênciasLetras e Ciências Exatas-Universidade Estadual Paulista “Júlio de Mesquita Filho”São José do Rio PretoBrazil
  3. 3.Department of Biotechnology, Genetics and Cell BiologyUniversidade Estadual de MaringáMaringáBrazil
  4. 4.Center for Molecular, Structural and Functional Biology, CBM-Research Support Center ComplexUniversidade Estadual de MaringáMaringáBrazil
  5. 5.Department of BiochemistryUniversidade Federal do ParanáCuritibaBrazil

Personalised recommendations