A model for the chemomechanical coupling of the mammalian cytoplasmic dynein molecular motor

  • Ping XieEmail author
Original Article


Available single-molecule data have shown that some mammalian cytoplasmic dynein dimers move on microtubules with a constant step size of about 8.2 nm. Here, a model is presented for the chemomechanical coupling of these mammalian cytoplasmic dynein dimers. In contrast to the previous models, a peculiar feature of the current model is that the rate constants of ATPase activity are independent of the external force. Based on this model, analytical studies of the motor dynamics are presented. With only four adjustable parameters, the theoretical results reproduce quantitatively diverse available single-molecule data on the force dependence of stepping ratio, velocity, mean dwell time, and dwell-time distribution between two mechanical steps. Predicted results are also provided for the force dependence of the number of ATP molecules consumed per mechanical step, indicating that under no or low force the motors exhibit a tight chemomechanical coupling, and as the force increases the number of ATPs consumed per step increases greatly.


Molecular motor Dynein Mechanochemistry Dynamics Model 



This work was supported by the National Natural Science Foundation of China (Grant no. 11775301).

Supplementary material

249_2019_1386_MOESM1_ESM.pdf (156 kb)
Supplementary material 1 (PDF 156 kb)


  1. Allan VJ (2011) Cytoplasmic dynein. Biochem Soc Trans 39:1169–1178CrossRefGoogle Scholar
  2. Bameta T, Padinhateeri R, Inamdar MM (2013) Force generation and step-size fluctuations in a dynein motor. J Stat Mech 2:02030Google Scholar
  3. Bhabha G, Johnson GT, Schroeder CM, Vale RD (2016) How dynein moves along microtubules. Trends Biochem Sci 41:94–105CrossRefGoogle Scholar
  4. Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE, Cho C, Milligan RA, Vale RD, Gibbons IR (2008) Structure and functional role of dynein’s microtubule-binding domain. Science 322:1691–1695CrossRefGoogle Scholar
  5. Carter AP, Cho C, Jin L, Vale RD (2011) Crystal structure of the dynein motor domain. Science 331:1159–1165CrossRefGoogle Scholar
  6. DeWitt M, Chang A, Combs P, Yildiz A (2012) Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science 335:221–225CrossRefGoogle Scholar
  7. Gennerich A, Carter A, Reck-Peterson S, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965CrossRefGoogle Scholar
  8. Gibbons IR, Gibbons BH, Mocz G, Asai DJ (1991) Multiple nucleotide binding sites in the sequence of dynein beta heavy chain. Nature 352:640–643CrossRefGoogle Scholar
  9. Gibbons IR, Garbarino JE, Tan CE, Reck-Peterson SL, Vale RD, Carter AP (2005) The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J Biol Chem 280:23960–23965CrossRefGoogle Scholar
  10. Imamula K, Kon T, Ohkura R, Sutoh K (2007) The coordination of cyclic microtubule association/dissociation and tail swing of cytoplasmic dynein. Proc Natl Acad Sci USA 104:16134–16139CrossRefGoogle Scholar
  11. Kon T, Imamula K, Roberts AJ, Ohkura R, Knight PJ, Gibbons IR, Burgess SA, Sutoh K (2009) Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat Struct Mol Biol 16:325–333CrossRefGoogle Scholar
  12. Kon T, Sutoh K, Kurisu G (2011) X-ray structure of a functional full-length dynein motor domain. Nat Struct Mol Biol 18:638–642CrossRefGoogle Scholar
  13. Kon T, Oyama T, Shimo-Kon R, Imamula K, Shima T, Sutoh K, Kurisu G (2012) The 2.8 Å crystal structure of the dynein motor domain. Nature 484:345–350CrossRefGoogle Scholar
  14. Morikawa M, Yajima H, Nitta R, Inoue S, Ogura T, Sato C, Hirokawa N (2015) X-ray and Cryo-EM structures reveal mutual conformational changes of Kinesin and GTP-state microtubules upon binding. EMBO J 34:1270–1286CrossRefGoogle Scholar
  15. Mukherji S (2008) Model for the unidirectional motion of a dynein molecule. Phys Rev E 77:051916CrossRefGoogle Scholar
  16. Nicholas MP, Hook P, Gennerich A (2015) Control of cytoplasmic dynein force production and processivity by its C-terminal domain. Nat Commun 6:6206CrossRefGoogle Scholar
  17. Qiu W, Derr N, Goodman B, Villa E, Wu D, Shih W, Reck-Peterson S (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nat Struct Mol Biol 19:193–200CrossRefGoogle Scholar
  18. Raaijmakers JA, Medema RH (2014) Function and regulation of dynein in mitotic chromosome segregation. Chromosoma 123:407–422CrossRefGoogle Scholar
  19. Reck-Peterson S, Yildiz A, Carter A, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348CrossRefGoogle Scholar
  20. Redwine WB, Hernández-López R, Zou S, Huang J, Reck-Peterson SL, Leschziner AE (2012) Structural basis for microtubule binding and release by dynein. Science 337:1532–1536CrossRefGoogle Scholar
  21. Roberts AJ, Numata N, Walker ML, Kato YS, Malkova B, Kon T, Ohkura R, Arisaka F, Knight PJ, Sutoh K, Burgess SA (2009) AAA+ ring and linker swing mechanism in the dynein motor. Cell 136:485–495CrossRefGoogle Scholar
  22. Roberts AJ, Kon T, Knight PJ, Sutoh K, Burgess SA (2013) Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol 14:713–726CrossRefGoogle Scholar
  23. Sakamoto T, Webb MR, Forgacs E, White HD, Sellers JR (2008) Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455:128–132CrossRefGoogle Scholar
  24. Sarlah A, Vilfan A (2014) The winch model can explain both coordinated and uncoordinated stepping of cytoplasmic dynein. Biophys J 107:662–671CrossRefGoogle Scholar
  25. Sasaki K, Kaya M, Higuchi H (2018) A unified walking model for dimeric motor proteins. Biophys J 115:1–12CrossRefGoogle Scholar
  26. Schmidt H (2015) Dynein motors: how AAA+ ring opening and closing coordinates microtubule binding and linker movement. BioEssays 37:532–543CrossRefGoogle Scholar
  27. Schmidt H, Gleave ES, Carter AP (2012) Insights into dynein motor domain function from a 3.3-Å crystal structure. Nat Struct Mol Biol 19:492–497CrossRefGoogle Scholar
  28. Schmidt H, Zalyte R, Urnavicius L, Carter AP (2015) Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518:435–438CrossRefGoogle Scholar
  29. Shi X-X, Fu Y-B, Guo S-K, Wang P-Y, Chen H, Xie P (2018) Investigating role of conformational changes of microtubule in regulating its binding affinity to kinesin by all-atom molecular dynamics simulation. Proteins 86:1127–1139CrossRefGoogle Scholar
  30. Singh MP, Mallik R, Gross SP, Yu CC (2005) Monte Carlo modeling of single molecule cytoplasmic dynein. Proc Natl Acad Sci USA 102:12059–12064CrossRefGoogle Scholar
  31. Sumathy S, Satyanarayana SVM (2015) Model for bidirectional movement of cytoplasmic dynein. J Theor Biol 380:48–52CrossRefGoogle Scholar
  32. Toba S, Watanabe T, Yamaguchi-Okimoto L, Toyoshima Y, Higuchi H (2006) Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc Natl Acad Sci USA 103:5741–5745CrossRefGoogle Scholar
  33. Trott L, Hafezparast M, Madzvamuse A (2018) A mathematical understanding of how cytoplasmic dynein walks on microtubules. R Soc Open Sci 5:171568CrossRefGoogle Scholar
  34. Tsygankov D, Serohijos A, Dokholyan N, Elston T (2011) A physical model reveals the mechanochemistry responsible for dynein’s processive motion. Biophys J 101:144–150CrossRefGoogle Scholar
  35. Uchimura S, Fujii T, Takazaki H et al (2015) A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208:211–222CrossRefGoogle Scholar
  36. Xie P (2010) Mechanism of processive movement of monomeric and dimeric kinesin molecules. Int J Biol Sci 6:665–674CrossRefGoogle Scholar
  37. Xie P, Chen H (2018) A non-tight chemomechanical coupling model for force-dependence of movement dynamics of molecular motors. Phys Chem Chem Phys 20:4752–4759CrossRefGoogle Scholar
  38. Xie P, Dou S-X, Wang P-Y (2006) Model for unidirectional movement of axonemal and cytoplasmic dynein molecules. Acta Biochim Biophys Sin 38:711–724CrossRefGoogle Scholar
  39. Xie P, Guo S-K, Chen H (2019) ATP-concentration- and force-dependent chemomechanical coupling of kinesin molecular motors. J Chem Inf Model 59:360–372CrossRefGoogle Scholar
  40. Yildiz A, Tomishige M, Gennerich A, Vale RD (2008) Intramolecular strain coordinates kinesin stepping behavior along microtubules. Cell 134:1030–1041CrossRefGoogle Scholar
  41. Zhao XY, Sun W, Zhang JP, Tala Guo WS (2014) A model for the coordinated stepping of cytoplasmic dynein. Biochem Biophys Res Commun 453:686–691CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  1. 1.Key Laboratory of Soft Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations